TY - JOUR A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming JF - Environmental Research N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - https://doi.org/10.1016/j.envres.2020.109447 SN - 0013-9351 SN - 1096-0953 VL - 186 SP - 1 EP - 10 PB - Elsevier CY - San Diego, California ER - TY - JOUR A1 - Ueckerdt, Falko A1 - Frieler, Katja A1 - Lange, Stefan A1 - Wenz, Leonie A1 - Luderer, Gunnar A1 - Levermann, Anders T1 - The economically optimal warming limit of the planet JF - Earth system dynamics N2 - Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy–economy–climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. Y1 - 2019 U6 - https://doi.org/10.5194/esd-10-741-2019 SN - 2190-4979 SN - 2190-4987 VL - 10 IS - 4 SP - 741 EP - 763 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1430 KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516511 SN - 1866-8372 ER -