TY - JOUR A1 - Lüth, Anja A1 - Neuber, Corinna A1 - Kleuser, Burkhard T1 - Novel methods for the quantification of (2E)-hexadecenal by liquid chromatography with detection by either ESI QTOF tandem mass spectrometry or fluorescence measurement JF - Analytica chimica acta : an international journal devoted to all branches of analytical chemistry N2 - Sphingosine-1-phosphate lyase (SPL) is the only known enzyme that irreversibly cleaves sphingosine-1-phosphate (S1P) into phosphoethanolamine and (2E)-hexadecenal during the final step of sphingolipid catabolism. Because S1P is involved in a wide range of physiological and diseased processes, determining the activity of the degrading enzyme is of great interest. Therefore, we developed two procedures based on liquid chromatography (LC) for analysing (2E)-hexadecenal, which is one of the two S1P degradation products. After separation, two different quantification methods were performed, tandem mass spectrometry (MS) and fluorescence detection. However, (2E)-hexadecenal as a long-chain aldehyde is not ionisable by electrospray ionisation (ESI) for MS quantification and has an insufficient number of corresponding double bonds for fluorescence detection. Therefore, we investigated 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) as a derivatisation reagent. DAIH transforms the aldehyde into an ionisable and fluorescent analogue for quantitative analysis. Our conditions were optimised to obtain the outstanding limit of detection (LOD) of 1 fmol per sample (30 mu L) for LC-MS/MS and 0.75 pmol per sample (200 mu l) for LC determination with fluorescence detection. We developed an extraction procedure to separate and concentrate (2E)-hexadecenal from biological samples for these measurements. To confirm our new methods, we analysed the (2E)-hexadecenal level of different cell lines and human plasma for the first time ever. Furthermore, we treated HT-29 cells with different concentrations of 4-deoxypyridoxine (DOP), which competitively inhibits pyridoxal-5-phosphate (P5P), an essential cofactor for SPL activity, and observed a significant decrease in (2E)-hexadecenal relative to the untreated cells. KW - (2E)-Hexadecenal KW - Sphingosine-1-phosphate lyase KW - Derivatisation KW - Tandem mass spectrometry KW - Fluorescence Y1 - 2012 U6 - https://doi.org/10.1016/j.aca.2012.01.063 SN - 0003-2670 VL - 722 SP - 70 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jbeily, Nayla A1 - Suckert, Iris A1 - Gonnert, Falk A. A1 - Acht, Benedikt A1 - Bockmeyer, Clemens L. A1 - Grossmann, Sascha D. A1 - Blaess, Markus F. A1 - Lüth, Anja A1 - Deigner, Hans-Peter A1 - Bauer, Michael A1 - Claus, Ralf A. T1 - Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response JF - Journal of lipid research N2 - Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress response resulting in the formation of membrane embedded ceramide-enriched lipid rafts and the reorganization of receptor complexes. Consistently, decompartmentalization of ceramide formation from inert sphingomyelin has been associated with signaling events and regulation of the cellular phenotype. Herein, we addressed the question of whether the secretion of acid sphingomyelinase is involved in host response during sepsis. We found an exaggerated clinical course in mice genetically deficient in acid sphingomyelinase characterized by an increased bacterial burden, an increased phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a functional level, leukocyte-endothelial interaction was found diminished in sphingomyelinase-deficient animals corresponding to a distinct leukocytes' phenotype with respect to rolling and sticking as well as expression of cellular surface proteins.(jlr) We conclude that hydrolysis of membrane-embedded sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role in the first line of defense against invading microorganisms. This function might be essential during the early phase of infection leading to an adaptive response of remote cells and tissues.-Jbeily, N., I. Suckert, F. A. Gonnert, B. Acht, C. L. Bockmeyer, S. D. Grossmann, M. F. Blaess, A. Lueth, H.-P. Deigner, M. Bauer, and R. A. Claus. Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response. J. Lipid Res. 2013. 54: 410-424. KW - sphingomyelin phosphodiesterase 1 KW - inflammation KW - sepsis KW - gene expression KW - survival KW - leukocyte-endothelial interaction KW - trans-migration KW - organ failure Y1 - 2013 U6 - https://doi.org/10.1194/jlr.M031625 SN - 0022-2275 VL - 54 IS - 2 SP - 410 EP - 424 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Lotinun, Sutada A1 - Kiviranta, Riku A1 - Matsubara, Takuma A1 - Alzate, Jorge A. A1 - Neff, Lynn A1 - Lüth, Anja A1 - Koskivirta, Ilpo A1 - Kleuser, Burkhard A1 - Vacher, Jean A1 - Vuorio, Eero A1 - Horne, William C. A1 - Baron, Roland T1 - Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation JF - The journal of clinical investigation N2 - Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-l-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P(1,3) receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P. Y1 - 2013 U6 - https://doi.org/10.1172/JCI64840 SN - 0021-9738 VL - 123 IS - 2 SP - 666 EP - 681 PB - American Society for Clinical Investigation CY - Ann Arbor ER - TY - JOUR A1 - Böhm, Andreas A1 - Flößer, Anja A1 - Ermler, Swen A1 - Fender, Anke C. A1 - Lüth, Anja A1 - Kleuser, Burkhard A1 - Schrör, Karsten A1 - Rauch, Bernhard H. T1 - Factor-Xa-induced mitogenesis and migration require sphingosine kinase activity and S1P formation in human vascular smooth muscle cells JF - Cardiovascular research N2 - Sphingosine-1-phosphate (S1P) is a cellular signalling lipid generated by sphingosine kinase-1 (SPHK1). The aim of the study was to investigate whether the activated coagulation factor-X (FXa) regulates SPHK1 transcription and the formation of S1P and subsequent mitogenesis and migration of human vascular smooth muscle cells (SMC). FXa induced a time- (36 h) and concentration-dependent (330 nmol/L) increase of SPHK1 mRNA and protein expression in human aortic SMC, resulting in an increased synthesis of S1P. FXa-stimulated transcription of SPHK1 was mediated by the protease-activated receptor-1 (PAR-1) and PAR-2. In human carotid artery plaques, expression of SPHK1 was observed at SMC-rich sites and was co-localized with intraplaque FX/FXa content. FXa-induced SPHK1 transcription was attenuated by inhibitors of Rho kinase (Y27632) and by protein kinase C (PKC) isoforms (GF109203X). In addition, FXa rapidly induced the activation of the small GTPase Rho A. Inhibition of signalling pathways which regulate SPHK1 expression, inhibition of its activity or siRNA-mediated SPHK1 knockdown attenuated the mitogenic and chemotactic response of human SMC to FXa. These data suggest that FXa induces SPHK1 expression and increases S1P formation independent of thrombin and that this involves the activation of Rho A and PKC signalling. In addition to its key function in coagulation, this direct effect of FXa on human SMC may increase cell proliferation and migration at sites of vessel injury and thereby contribute to the progression of vascular lesions. KW - Factor-Xa KW - Atherosclerosis KW - Proliferation KW - Smooth muscle cells KW - Sphingosine kinase-1 Y1 - 2013 U6 - https://doi.org/10.1093/cvr/cvt112 SN - 0008-6363 VL - 99 IS - 3 SP - 505 EP - 513 PB - Oxford Univ. Press CY - Oxford ER - TY - CHAP A1 - Natek, M. A1 - Lüth, Anja A1 - Kleuser, Burkhard A1 - Schäfer-Korting, M. A1 - Weindl, G. T1 - CpG-oligonucleotides modulate sphingosine-1-phosphate metabolism in normal human keratinocytes T2 - The journal of investigative dermatology Y1 - 2012 SN - 0022-202X VL - 132 IS - 5 SP - S112 EP - S112 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Reichel, Martin A1 - Hoenig, Stefanie A1 - Liebisch, Gerhard A1 - Lüth, Anja A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Schmitz, Gerd A1 - Kornhuber, Johannes T1 - Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients JF - Biochimica et biophysica acta : Molecular and cell biology of lipids N2 - Background: Alcohol abuse is a major risk factor for somatic and neuropsychiatric diseases. Despite their potential clinical importance, little is known about the alterations of plasma glycerophospholipid (GPL) and sphingolipid (SPL) species associated with alcohol abuse. Methods: Plasma GPL and SPL species were quantified using electrospray ionization tandem mass spectrometry in samples from 23 male alcohol-dependent patients before and after detoxification, as well as from 20 healthy male controls. Results: A comparison of alcohol-dependent patients with controls revealed higher phosphatidylcholine (PC; P-value = 0.008) and phosphatidylinositol (PI; P-value = 0.001) concentrations in patients before detoxification, and higher PI (P-value = 0.001) and phosphatidylethanolamine (PE)-based plasmalogen (PEP; P-value = 0.003) concentrations after detoxification. Lysophosphatidylcholines (LPC) were increased by acute intoxication (P-value = 0.002). Sphingomyelin (SM) concentration increased during detoxification (P-value = 0.011). The concentration of SM 23:0 was lower in patients (P-value = 2.79 x 10(-5)), and the concentrations of ceramide Cer d18:1/16:0 and Cer d18:1/18:0 were higher in patients (P-value = 2.45 x 10(-5) and 3.73 x 10(-5)). Activity of lysosomal acid sphingomyelinase (ASM) in patients correlated positively with the concentrations of eight LPC species, while activity of secreted ASM was inversely correlated with several PE, PI and PC species, and positively correlated with the molar ratio of PC to SM (Pearson's r = 0.432; P-value = 0.039). Conclusion: Plasma concentrations of numerous GPL and SPL species were altered in alcohol-dependent patients. These molecules might serve as potential biomarkers to improve the diagnosis of patients and to indicate health risks associated with alcohol abuse. Our study further indicates that there are strong interactions between plasma GPL concentrations and SPL metabolism. (C) 2015 Elsevier B.V. All rights reserved. KW - Acid sphingomyelinase KW - Alcohol dependence KW - Anxiety KW - Cardiovascular KW - Case-control study KW - Ceramide KW - Clinical KW - Depression KW - Diagnostic KW - Disease KW - Glycerophospholipids KW - Lysophosphatidylcholines KW - Mass spectrometry KW - Phosphatidylcholines KW - Phosphatidylinositols KW - Plasma KW - Plasmalogens KW - Sphingolipids KW - Sphingomyelin KW - Tandem mass spectrometry Y1 - 2015 U6 - https://doi.org/10.1016/j.bbalip.2015.08.005 SN - 1388-1981 SN - 0006-3002 VL - 1851 IS - 11 SP - 1501 EP - 1510 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bäumer, Wolfgang A1 - Rossbach, Kristine A1 - Mischke, Reinhard A1 - Reines, Ilka A1 - Langbein-Detsch, Ines A1 - Lüth, Anja A1 - Kleuser, Burkhard T1 - Decreased concentration and enhanced metabolism of sphingosine-1-Phosphate in lesional skin of dogs with atopic dermatitis disturbed Sphingosine-1-Phosphate homeostasis in atopic Dermatitis T2 - The journal of investigative dermatology Y1 - 2011 U6 - https://doi.org/10.1038/jid.2010.252 SN - 0022-202X VL - 131 IS - 1 SP - 266 EP - 268 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Gutbier, Birgitt A1 - Schönrock, Stefanie M. A1 - Ehrler, Carolin A1 - Haberberger, Rainer A1 - Dietert, Kristina A1 - Gruber, Achim D. A1 - Kummer, Wolfgang A1 - Michalick, Laura A1 - Kuebler, Wolfgang M. A1 - Hocke, Andreas C. A1 - Szymanski, Kolja A1 - Letsiou, Eleftheria A1 - Lüth, Anja A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Mitchell, Timothy J. A1 - Bertrams, Wilhelm A1 - Schmeck, Bernd A1 - Treue, Denise A1 - Klauschen, Frederick A1 - Bauer, Torsten T. A1 - Tönnies, Mario A1 - Weissmann, Norbert A1 - Hippenstiel, Stefan A1 - Suttorp, Norbert A1 - Witzenrath, Martin T1 - Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2 JF - Critical care medicine N2 - Objectives: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. Design: Controlled, in vitro, ex vivo, and in vivo laboratory study. Subjects: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. Interventions: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. Measurements and Main Results: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1(-/-) mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. Conclusions: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury. KW - acute lung injury KW - pneumococcal pneumonia KW - sphingosine kinase 1 KW - sphingosine-1-phosphate KW - sphingosine-1-phosphate receptor 2 Y1 - 2018 U6 - https://doi.org/10.1097/CCM.0000000000002916 SN - 0090-3493 SN - 1530-0293 VL - 46 IS - 3 SP - e258 EP - e267 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -