TY - JOUR A1 - Srinivasan, K. A1 - Senthilkumar, D. V. A1 - Mohamed, I. Raja A1 - Murali, K. A1 - Lakshmanan, M. A1 - Kurths, Jürgen T1 - Anticipating, complete and lag synchronizations in RC phase-shift network based coupled Chua's circuits without delay JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We construct a new RC phase shift network based Chua's circuit, which exhibits a period-doubling bifurcation route to chaos. Using coupled versions of such a phase-shift network based Chua's oscillators, we describe a new method for achieving complete synchronization (CS), approximate lag synchronization (LS), and approximate anticipating synchronization (AS) without delay or parameter mismatch. Employing the Pecora and Carroll approach, chaos synchronization is achieved in coupled chaotic oscillators, where the drive system variables control the response system. As a result, AS or LS or CS is demonstrated without using a variable delay line both experimentally and numerically. Y1 - 2012 U6 - https://doi.org/10.1063/1.4711375 SN - 1054-1500 VL - 22 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kurths, Jürgen A1 - Schwarz, Udo T1 - Application of techniques of nonlinear dynamics to SS Cyg N2 - We look for structural properties in the light curve of the dwarf nova SS Cyg by means of techniques from nonlinear dynamics. Applying the popular Grassberger-Procaccia procedure, Cannizzo and Goddings (1988) showed that there is no evidence for a low-dimensional attractor underlying this record. Because there are some hints for order in the light curve, we search for other signatures of deterministic systems. Therefore, we use other methods recently developed in this theory, such as local linear prediction and recurrence maps. Our main findings are: i] the prediction error grows exponentially during outburst phases, but via a power law in the quiescent states, ii] there are some rather regular patterns in this light curve which sometimes recur, but the recurrence is not regular. This leads to the following conclusions: i] The outburst dynamics shows a higher degree of order than the quiescent one. There are some hints for deterministic chaos in the outburst behavior. ii] The light curve is a complex mixture of deterministic and stochastic structures. The analysis presented in this paper shows that methods of nonlinear dynamics can be an efficient tool for the study of complex processes, even if there is no evidence for a low-dimensional attractor. Y1 - 1993 UR - http://www.agnld.uni-potsdam.de/~shw/Paper/SS_Cyg_AIP.ps.gz SN - 0-7503-0282-8 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen A1 - Hu, B. T1 - Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise Y1 - 2001 ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Zaks, Michael A. A1 - Kurths, Jürgen T1 - Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization N2 - The chaotically driven circle map is considered as the simplest model ofphase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed. Y1 - 1997 ER - TY - JOUR A1 - Anishchenko, Vadim S. A1 - Vadivasova, T. E. A1 - Kurths, Jürgen A1 - Okrokvertskhov, G. A. A1 - Strelkova, G. I. T1 - Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment N2 - We present results of physical experiments where we measure the autocorrelation function (ACF) and the spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also established that the evolution of the instantaneous phase can be approximated by a Wiener random process Y1 - 2004 SN - 1063-651X ER - TY - JOUR A1 - Belykh, Vladimir N. A1 - Osipov, Grigory V. A1 - Kuckländer, Nina A1 - Blasius, Bernd A1 - Kurths, Jürgen T1 - Automatic control of phase synchronization in coupled complex oscillators N2 - We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic R"ossler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic R"ossler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators. Y1 - 2005 UR - http://www.agnld.uni-potsdam.de/~bernd/papers/physica_D.pdf ER - TY - JOUR A1 - Frasca, Mattia A1 - Bergner, Andre A1 - Kurths, Jürgen A1 - Fortuna, Luigi T1 - Bifurcations in a star-like network of Stuart-Landau oscillators JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - In this paper, we analytically study a star motif of Stuart-Landau oscillators, derive the bifurcation diagram and discuss the different forms of synchronization arising in such a system. Despite the parameter mismatch between the central node and the peripheral ones, an analytical approach independent of the number of units in the system has been proposed. The approach allows to calculate the separatrices between the regions with distinct dynamical behavior and to determine the nature of the different transitions to synchronization appearing in the system. The theoretical analysis is supported by numerical results. KW - Complex networks KW - synchronization KW - bifurcations Y1 - 2012 U6 - https://doi.org/10.1142/S0218127412501738 SN - 0218-1274 VL - 22 IS - 7 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Gowin, W. A1 - Saparin, Peter A1 - Kurths, Jürgen A1 - Felsenberg, D. T1 - Bone Architecture assessment with Measures of Complexity Y1 - 2001 ER - TY - JOUR A1 - Gowin, W. A1 - Saparin, Peter A1 - Kurths, Jürgen T1 - Bone architecture quantification: Measures of complexity compared to failure lead results Y1 - 2001 ER - TY - JOUR A1 - Schinkel, Stefan A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Brain signal analysis based on recurrences N2 - The EEG is one of the most commonly used tools in brain research. Though of high relevance in research, the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of a nonlinear data analysis method, the recurrence quantification analysis (RQA), to Such data. The method solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems, such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it might improve contemporary EEG analysis. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/09284257 U6 - https://doi.org/10.1016/j.jphysparis.2009.05.007 SN - 0928-4257 ER -