TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Marwan, Norbert A1 - Caesar, Levke A1 - Kurths, Jürgen T1 - Wavelet-based multiscale similarity measure for complex networks JF - The European physical journal : B, Condensed matter and complex systems N2 - In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales. KW - Statistical and Nonlinear Physics Y1 - 2018 U6 - https://doi.org/10.1140/epjb/e2018-90460-6 SN - 1434-6028 SN - 1434-6036 VL - 91 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Quantifying the roles of single stations within homogeneous regions using complex network analysis JF - Journal of hydrology N2 - Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years, several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify the study region in terms of homogeneity but fail to provide microscopic information about the interaction between communities, as well as about each station within the communities. We propose a complex network-based approach to extract this valuable information and demonstrate the potential of our approach using a rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid points (nodes) were classified into universal roles according to their pattern of within- and between-community connections. The method thus yields zoomed-in details of individual rainfall grids within each community. KW - Complex network KW - Event synchronization KW - Rainfall network KW - Z-P approach Y1 - 2018 U6 - https://doi.org/10.1016/j.jhydrol.2018.06.050 SN - 0022-1694 SN - 1879-2707 VL - 563 SP - 802 EP - 810 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Goswami, Bedartha A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Marwan, Norbert A1 - Heitzig, Jobst A1 - Breitenbach, Sebastian Franz Martin A1 - Kurths, Jürgen T1 - Abrupt transitions in time series with uncertainties JF - Nature Communications N2 - Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an ‘uncertainty-aware’ framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-017-02456-6 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Goswami, Bedartha A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Marwan, Norbert A1 - Heitzig, Jobst A1 - Breitenbach, Sebastian Franz Martin A1 - Kurths, Jürgen T1 - Abrupt transitions in time series with uncertainties T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Nino-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 576 KW - North-Atlantic climate KW - Indian monsoon KW - Holocene KW - teleconnections KW - variability KW - periods KW - records Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423111 SN - 1866-8372 IS - 576 ER - TY - JOUR A1 - Ozturk, Ugur A1 - Marwan, Norbert A1 - Korup, Oliver A1 - Saito, H. A1 - Agarwa, Ankit A1 - Grossman, M. J. A1 - Zaiki, M. A1 - Kurths, Jürgen T1 - Complex networks for tracking extreme rainfall during typhoons JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Reconciling the paths of extreme rainfall with those of typhoons remains difficult despite advanced forecasting techniques. We use complex networks defined by a nonlinear synchronization measure termed event synchronization to track extreme rainfall over the Japanese islands. Directed networks objectively record patterns of heavy rain brought by frontal storms and typhoons but mask out contributions of local convective storms. We propose a radial rank method to show that paths of extreme rainfall in the typhoon season (August-November, ASON) follow the overall southwest-northeast motion of typhoons and mean rainfall gradient of Japan. The associated eye-of-the-typhoon tracks deviate notably and may thus distort estimates of heavy typhoon rainfall. We mainly found that the lower spread of rainfall tracks in ASON may enable better hindcasting than for westerly-fed frontal storms in June and July. Y1 - 2018 U6 - https://doi.org/10.1063/1.5004480 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Shukla, Roopam A1 - Agarwal, Ankit A1 - Sachdeva, Kamna A1 - Kurths, Jürgen A1 - Joshi, P. K. T1 - Climate change perception BT - an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - Climate change and variability have created widespread risks for farmers’ food and livelihood security in the Himalayas. However, the extent of impacts experienced and perceived by farmers varies, as there is substantial diversity in the demographic, social, and economic conditions. Therefore, it is essential to understand how farmers with different resource-endowment and household characteristics perceive climatic risks. This study aims to analyze how farmer types perceive climate change processes and its impacts to gain insight into locally differentiated concerns by farming communities. The present study is based in the Uttarakhand state of Indian Western Himalayas. We examine farmer perceptions of climate change and how perceived impacts differ across farmer types. Primary household interviews with farming households (n = 241) were done in Chakrata and Bhikiyasian tehsil in Uttarakhand, India. In addition, annual and seasonal patterns of historical data of temperature (1951–2013) and precipitation (1901–2013) were analyzed to estimate trends and validate farmers’ perception. Using statistical methods farmer typology was constructed, and five unique farmer types are identified. Majority of respondents across all farmer types noticed a decrease in summer and winter precipitation and an increase in summer temperature. Whereas the perceptions of impacts of climate change diverged across farmer types, as specific farmer types exclusively experienced few impacts. Impact of climatic risks on household food security and income was significantly perceived stronger by low-resource-endowed subsistence farmers, whereas the landless farmer type exclusively felt impacts on the communities social bond. This deeper understanding of the differentiated perception of impacts has strong implications for agricultural and development policymaking, highlighting the need for providing flexible adaptation options rather than specific solutions to avoid inequalities in fulfilling the needs of the heterogeneous farming communities. Y1 - 2018 U6 - https://doi.org/10.1007/s10584-018-2314-z SN - 0165-0009 SN - 1573-1480 VL - 152 IS - 1 SP - 103 EP - 119 PB - Springer CY - Dordrecht ER -