TY - JOUR A1 - Voss, Henning U. A1 - Kurths, Jürgen T1 - Reconstruction of nonlinear time-delayed feedback models from optical data Y1 - 1999 ER - TY - JOUR A1 - Ziehmann, Christine A1 - Smith, L. A1 - Kurths, Jürgen T1 - The bootstrap and lyapunov exponents in deterministic chaos Y1 - 1999 ER - TY - JOUR A1 - Zaikin, Alexei A. A1 - Kurths, Jürgen T1 - Modeling Cognitive Control in Simple Movements Y1 - 1999 SN - 1-563-96863-0 ER - TY - JOUR A1 - Kolodner, P. A1 - Abel, Markus A1 - Kurths, Jürgen A1 - Voss, Henning U. T1 - Amplitude equations from spatiotemporal binary-fluid convection data Y1 - 1999 UR - http://www.stat.physik.uni-potsdam.de/~markus/papers/PRL83-3422.pdf ER - TY - JOUR A1 - Schwache, A. A1 - Kurths, Jürgen A1 - Mitschke, F. A1 - Voss, Henning U. T1 - Equations of motion from chaotic data : a driven optical fiber ring resonator Y1 - 1999 ER - TY - JOUR A1 - Braun, Robert A1 - Feudel, Fred A1 - Gebogi, C. A1 - Kurths, Jürgen A1 - Witt, Annette T1 - Tracer dynamics in a flow of driven vortices Y1 - 1999 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Abel, Hans-Henning A1 - Kurths, Jürgen A1 - Schäfer, Carsten T1 - Synchronization in the human cardiorespiratory system Y1 - 1999 ER - TY - JOUR A1 - Park, Eun Hyoung A1 - Rosenblum, Michael A1 - Kurths, Jürgen A1 - Zaks, Michael A. T1 - Alternating locking ratios in imperfect phase synchronization Y1 - 1999 ER - TY - JOUR A1 - Heuer, Axel A1 - Schultheiss, J. A1 - Hodgson, N. A1 - Kurths, Jürgen A1 - Menzel, Ralf A1 - Raab, Volker T1 - Transverse effects in phase conjugate laser mirrors based on stimulated brillouin scattering Y1 - 1999 ER - TY - JOUR A1 - Schwarz, Udo A1 - Spahn, Frank A1 - Grebogi, Celso A1 - Kurths, Jürgen A1 - Petzschmann, Olaf T1 - Length scales of clustering in granular gases Y1 - 1999 ER - TY - GEN A1 - Motter, Adilson E. A1 - Matias, Manuel A. A1 - Kurths, Jürgen A1 - Ott, Edward T1 - Dynamics on complex networks and applications T2 - Physica. D, Nonlinear phenomena KW - complex systems KW - nonlinear dynamics KW - statistical physics Y1 - 2006 U6 - https://doi.org/10.1016/j.physd.2006.09.012 SN - 0167-2789 VL - 224 IS - 1-2 SP - VII EP - VIII PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zemanova, Lucia A1 - Zhou, Changsong A1 - Kurths, Jürgen T1 - Structural and functional clusters of complex brain networks JF - Physica, D, Nonlinear phenomena N2 - Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex. KW - cortical network KW - anatomical connectivity KW - functional connectivity KW - topological community KW - dynamical cluster Y1 - 2006 U6 - https://doi.org/10.1016/j.physd.2006.09.008 SN - 0167-2789 SN - 1872-8022 VL - 224 IS - 1-2 SP - 202 EP - 212 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Meucci, Riccardo A1 - Salvadori, Francesco A1 - Ivanchenko, Mikhail V. A1 - Al Naimee, Kais A1 - Zhou, Chansong A1 - Arecchi, Fortunato Tito A1 - Boccaletti, Stefano A1 - Kurths, Jürgen T1 - Synchronization of spontaneous bursting in a CO2 laser JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We present experimental and numerical evidence of synchronization of burst events in two different modulated CO2 lasers. Bursts appear randomly in each laser as trains of large amplitude spikes intercalated by a small amplitude chaotic regime. Experimental data and model show the frequency locking of bursts in a suitable interval of coupling strength. We explain the mechanism of this phenomenon and demonstrate the inhibitory properties of the implemented coupling. Y1 - 2006 U6 - https://doi.org/10.1103/PhysRevE.74.066207 SN - 2470-0045 SN - 2470-0053 VL - 74 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Synchronization approach to analysis of biological systems N2 - In this article we review the application of the synchronization theory to the analysis of multivariate biological signals. We address the problem of phase estimation from data and detection and quantification of weak interaction, as well as quantification of the direction of coupling. We discuss the potentials as well as limitations and misinterpretations of the approach Y1 - 2004 SN - 0219-4775 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij T1 - Comment on "Phase synchronization in discrete chaotic systems" N2 - Chen et al. [Phys. Rev. E 61, 2559 (2000)] recently proposed an extension of the concept of phase for discrete chaotic systems. Using the newly introduced definition of phase they studied the dynamics of coupled map lattices and compared these dynamics with phase synchronization of coupled continuous-time chaotic systems. In this paper we illustrate by two simple counterexamples that the angle variable introduced by Chen et al. fails to satisfy the basic requirements to the proper phase. Furthermore, we argue that an extension of the notion of phase synchronization to generic discrete maps is doubtful. Y1 - 2001 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical riddling in a system of coupled maps N2 - The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state. Y1 - 2001 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Kurths, Jürgen T1 - Phase synchronization in regular and chaotic systems Y1 - 2000 SN - 0218-1274 ER - TY - BOOK A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Kurths, Jürgen T1 - Synchronization : a universal concept in nonlinear sciences T3 - Cambridge nonlinear science series Y1 - 2001 SN - 0-521-59285-2 VL - 12 PB - Cambridge Univ. Press CY - Cambridge ET - 1st paperback ed., repr ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Zaks, Michael A. A1 - Kurths, Jürgen T1 - Phase synchronization of regular and chaotic oscillators Y1 - 1999 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical loss of synchronization in coupled chaotic systems Y1 - 2000 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - On the generalized dimensions for the fourier spectrum of the thue-morse sequence Y1 - 1999 ER - TY - JOUR A1 - Tass, Peter A1 - Rosenblum, Michael A1 - Weule, J. A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij A1 - Volkmann, J. A1 - Schnitzler, A. A1 - Freund, H.-J. T1 - Detection of n:m phase locking from noisy data : application to magnetoencephalography N2 - We use the concept of phase synchronization for the analysis of noisy nonstationary bivariate data. Phase synchronization is understood in a statistical sense as an existence of preferred values of the phase difference, and two techniques are proposed for a reliable detection of synchronous epochs. These methods are applied to magnetoencephalograms and records of muscle activity of a Parkinsonian patient. We reveal that Y1 - 1998 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - From Phase to Lag Synchronization in Coupled Chaotic Oscillators N2 - We study synchronization transitions in a system of two coupled self-sustained chaotic oscillators. We demonstrate that with the increase of coupling strength the system first undergoes the transition to phase synchronization. With a further increase of coupling, a new synchronous regime is observed, where the states of two oscillators are nearly identical, but one system lags in time to the other. We describe thisregime as a state with correlated amplitudes and a constant phase shift. These transitions are traced in the Lyapunov spectrum. Y1 - 1997 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Coherence Resonance in a Noise-Driven Excitable System N2 - We study the dynamics of the excitable Fitz Hugh-Nagumo system under external noisy driving. Noise activates the system producing a sequence of pulses. The coherence of these noise-induced oscillations is shown to be maximal for a certain noise amplitude. This new effect of coherence resonance is explained by different noise dependencies of the activation and the excursion times. A simple one-dimensional model based on the Langevin dynamics is proposed for the quantitative description of this phenomenon. Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij A1 - Schafer, C. A1 - Tass, Peter A1 - Abel, Hans-Henning T1 - Synchronization in Noisy Systems and Cardiorespiratory Interaction Y1 - 1998 ER - TY - JOUR A1 - Ruzick, Oliver A1 - Scheffczyk, Christian A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Dynamics of chaos-order interface in coupled map lattices Y1 - 1997 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Symbolic dynamics behind the singular continuous power spectra of continuous flows Y1 - 1998 ER - TY - JOUR A1 - Witt, Annette A1 - Kurths, Jürgen A1 - Pikovskij, Arkadij T1 - Testing stationarity in time series Y1 - 1998 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase synchronization in noisy and chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - On the correlation dimension of the spectral measure for the Thue-Morse sequence Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase synchronization in driven and coupled chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Effect of phase synchronization in driven chaotic oscillators Y1 - 1997 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Coherence resonance in a noise-driven excitable system Y1 - 1997 ER - TY - JOUR A1 - Romano, Maria Carmen A1 - Thiel, M. A1 - Kurths, Jürgen A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Detection of synchronization for non-phase-coherent and non-stationary data N2 - We present a new method to detect phase as well as generalized synchronization in a wide class of complex systems. It is based on the recurrences of the system's trajectory to the neighborhood of a former state in phase space. We illustrate the applicability of the algorithm for the paradigmatic chaotic Rossler system in the funnel regime and for noisy data, where other methods to detect phase synchronization fail. Furthermore, we demonstrate for electrochemical experiments that the method can easily detect phase and generalized synchronization in non-phase- coherent and even non-stationary time series Y1 - 2005 SN - 0295-5075 ER - TY - JOUR A1 - Zhou, Changsong A1 - Kurths, Jürgen A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Noise-enhanced phase synchronization of chaotic oscillators Y1 - 2002 ER - TY - JOUR A1 - Stolbova, Veronika A1 - Surovyatkina, Elena A1 - Bookhagen, Bodo A1 - Kurths, Jürgen T1 - Tipping elements of the Indian monsoon: Prediction of onset and withdrawal JF - Geophysical research letters N2 - Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL068392 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 3982 EP - 3990 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Boers, Niklas A1 - Goswami, Bedartha A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo A1 - Hoskins, Brian A1 - Kurths, Jürgen T1 - Complex networks reveal global pattern of extreme-rainfall teleconnections JF - Nature : the international weekly journal of science N2 - Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections(1,2). Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular(3,4), especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change(5-8). Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks. We find that the distance distribution of significant connections (P < 0.005) around the globe decays according to a power law up to distances of about 2,500 kilometres. For longer distances, the probability of significant connections is much higher than expected from the scaling of the power law. We attribute the shorter, power-law-distributed connections to regional weather systems. The longer, super-power-law-distributed connections form a global rainfall teleconnection pattern that is probably controlled by upper-level Rossby waves. We show that extreme-rainfall events in the monsoon systems of south-central Asia, east Asia and Africa are significantly synchronized. Moreover, we uncover concise links between south-central Asia and the European and North American extratropics, as well as the Southern Hemisphere extratropics. Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical-extratropical couplings. Our results provide insights into the function of Rossby waves in creating stable, global-scale dependencies of extreme-rainfall events, and into the potential predictability of associated natural hazards. Y1 - 2019 U6 - https://doi.org/10.1038/s41586-018-0872-x SN - 0028-0836 SN - 1476-4687 VL - 566 IS - 7744 SP - 373 EP - 377 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Riedl, Maik A1 - van Leeuwen, Peter Jan A1 - Suhrbier, Alexander A1 - Malberg, Hagen A1 - Groenemeyer, Dietrich A1 - Kurths, Jürgen A1 - Wessel, Niels T1 - Testing foetal-maternal heart rate synchronization via model-based analyses N2 - The investigation of foetal reaction to internal and external conditions and stimuli is an important tool in the characterization of the developing neural integration of the foetus. An interesting example of this is the study of the interrelationship between the foetal and the maternal heart rate. Recent studies have shown a certain likelihood of occasional heart rate synchronization between mother and foetus. In the case of respiratory-induced heart rate changes, the comparison with maternal surrogates suggests that the evidence for detected synchronization is largely statistical and does not result from physiological interaction. Rather, they simply reflect a stochastic, temporary stability of two independent oscillators with time-variant frequencies. We reanalysed three datasets from that study for a more local consideration. Epochs of assumed synchronization associated with short-term regulation of the foetal heart rate were selected and compared with synchronization resulting from white noise instead of the foetal signal. Using data-driven modelling analysis, it was possible to identify the consistent influence of the heartbeat duration of maternal beats preceding the foetal beats during epochs of synchronization. These maternal beats occurred approximately one maternal respiratory cycle prior to the affected foetal beat. A similar effect could not be found in the epochs without synchronization. Simulations based on the fitted models led to a higher likelihood of synchronization in the data segments with assumed foetal-maternal interaction than in the segment without such assumed interaction. We conclude that the data-driven model-based analysis can be a useful tool for the identification of synchronization. Y1 - 2009 UR - http://rsta.royalsocietypublishing.org/ U6 - https://doi.org/10.1098/rsta.2008.0277 SN - 1364-503X ER - TY - JOUR A1 - Ivanchenko, Mikhail V. A1 - Osipov, Grigory V. A1 - Shalfeev, V. D. A1 - Kurths, Jürgen T1 - Phase synchronization in ensembles of bursting oscillators N2 - We study the effects of mutual and external chaotic phase synchronization in ensembles of bursting oscillators. These oscillators (used for modeling neuronal dynamics) are essentially multiple time scale systems. We show that a transition to mutual phase synchronization takes place on the bursting time scale of globally coupled oscillators, while on the spiking time scale, they behave asynchronously. We also demonstrate the effect of the onset of external chaotic phase synchronization of the bursting behavior in the studied ensemble by a periodic driving applied to one arbitrarily taken neuron. We also propose an explanation of the mechanism behind this effect. We infer that the demonstrated phenomenon can be used efficiently for controlling bursting activity in neural ensembles Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Ivanchenko, Mikhail V. A1 - Osipov, Grigory V. A1 - Shalfeev, V. D. A1 - Kurths, Jürgen T1 - Phase synchronization of chaotic intermittent oscillations N2 - We study phase synchronization effects of chaotic oscillators with a type-I intermittency behavior. The external and mutual locking of the average length of the laminar stage for coupled discrete and continuous in time systems is shown and the mechanism of this synchronization is explained. We demonstrate that this phenomenon can be described by using results of the parametric resonance theory and that this correspondence enables one to predict and derive all zones of synchronization Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase Synchronization of Chaotic Rotators N2 - We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases remain positive even in the synchronous regime. Such frequency locked dynamics with different ratios of frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show that this transition to phase synchronization occurs via a crisis transition to a band-structured attractor. Y1 - 2002 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen A1 - Osipov, Grigory V. A1 - Kiss, Istvan Z. A1 - Hudson, J. L. T1 - Locking-based frequency measurement and synchronization of chaotic oscillators with complex dynamics Y1 - 2002 ER - TY - JOUR A1 - Zaks, Michael A. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Osipov, Grigory V. A1 - Kurths, Jürgen T1 - Phase synchronization of chaotic oscillations in terms of periodic orbits Y1 - 1997 SN - 1054-1500 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Rosenblum, Michael A1 - Osipov, Grigory V. A1 - Kurths, Jürgen T1 - Phase synchronization effects in a lattice of nonidentical Rössler oscillators Y1 - 1997 ER - TY - JOUR A1 - Rosenblum, Michael A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Phase synchronization of chaotic oscillators by external driving Y1 - 1997 ER - TY - JOUR A1 - Boccaletti, Stefano A1 - Kurths, Jürgen A1 - Osipov, Grigory V. T1 - The synchronization of chaotic systems Y1 - 2002 ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Kurths, Jürgen T1 - Regular and chaotic phase synchronization of coupled circle maps Y1 - 2002 ER - TY - JOUR A1 - Osipov, Grigory V. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij A1 - Zaks, Michael A. A1 - Kurths, Jürgen T1 - Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization N2 - The chaotically driven circle map is considered as the simplest model ofphase synchronization of a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting from the trajectory's hits on an eyelet, is observed. Y1 - 1997 ER - TY - JOUR A1 - Ivanchenko, Mikhail V. A1 - Osipov, Grigory V. A1 - Shalfeev, V. D. A1 - Kurths, Jürgen T1 - Synchronization of two non-scalar-coupled limit-cycle oscillators N2 - Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an understanding and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van der Pol oscillators a full description of all possible dynamical regimes, their mutual transitions and characteristics is still lacking. We present here a study of the phenomenon of mutual synchronization for two non-scalar- coupled non-identical limit-cycle oscillators and analyze phase, frequency and amplitude characteristics of synchronization regimes. A series of bifurcation diagrams that we obtain exhibit various regions of qualitatively different behavior. Among them we find mono-, bi- and multistability regions, beating and "oscillation death" ones; also a region, where one of the oscillators dominates the other one is observed. The frequency characteristics that we obtain reveal three qualitatively different types of synchronization: (i) on the mean frequency (the in-phase synchronization), (ii) with a shift from the mean frequency caused by a conservative coupling term (the anti-phase synchronization), and (iii) on the frequency of one of the oscillators (when one oscillator dominates the other). (C) 2003 Elsevier B.V. All rights reserved Y1 - 2004 ER - TY - JOUR A1 - Belykh, Vladimir N. A1 - Osipov, Grigory V. A1 - Kuckländer, Nina A1 - Blasius, Bernd A1 - Kurths, Jürgen T1 - Automatic control of phase synchronization in coupled complex oscillators N2 - We present an automatic control method for phase locking of regular and chaotic non-identical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic R"ossler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic R"ossler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators. Y1 - 2005 UR - http://www.agnld.uni-potsdam.de/~bernd/papers/physica_D.pdf ER -