TY - JOUR A1 - Zhou, Changsong A1 - Motter, Adilson E. A1 - Kurths, Jürgen T1 - Universality in the synchronization of weighted random networks N2 - Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters Y1 - 2006 UR - http://prl.aps.org/pdf/PRL/v96/i3/e034101 U6 - https://doi.org/10.1103/Physrevlett.96.034101 ER - TY - GEN A1 - Thiel, Marco A1 - Romano, Maria Carmen A1 - Kurths, Jürgen A1 - Rolfs, Martin T1 - Twin Surrogates to Test for Complex Synchronisation N2 - We present an approach to generate (multivariate) twin surrogates (TS) based on recurrence properties. This technique generates surrogates which correspond to an independent copy of the underlying system, i. e. they induce a trajectory of the underlying system starting at different initial conditions. We show that these surrogates are well suited to test for complex synchronisation and exemplify this for the paradigmatic system of R¨ossler oscillators. The proposed test enables to assess the statistical relevance of a synchronisation analysis from passive experiments which are typical in natural systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 264 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57231 ER - TY - JOUR A1 - Zhang, H. A1 - Hu, B. A1 - Hu, G. A1 - Ouyang, Q. A1 - Kurths, Jürgen T1 - Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Laundau equation Y1 - 2002 ER - TY - JOUR A1 - Heuer, Axel A1 - Schultheiss, J. A1 - Hodgson, N. A1 - Kurths, Jürgen A1 - Menzel, Ralf A1 - Raab, Volker T1 - Transverse effects in phase conjugate laser mirrors based on stimulated brillouin scattering Y1 - 1999 ER - TY - JOUR A1 - Hassan, M. K. A1 - Kurths, Jürgen T1 - Transition from random to ordered fractals in fragmentation of particles in an open system Y1 - 2001 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical riddling in a system of coupled maps N2 - The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state. Y1 - 2001 ER - TY - JOUR A1 - Popovych, Orest A1 - Maistrenko, Yu A1 - Mosekilde, Erik A1 - Pikovskij, Arkadij A1 - Kurths, Jürgen T1 - Transcritical loss of synchronization in coupled chaotic systems Y1 - 2000 ER - TY - JOUR A1 - Braun, Robert A1 - Feudel, Fred A1 - Gebogi, C. A1 - Kurths, Jürgen A1 - Witt, Annette T1 - Tracer dynamics in a flow of driven vortices Y1 - 1999 ER - TY - JOUR A1 - Stolbova, Veronika A1 - Surovyatkina, Elena A1 - Bookhagen, Bodo A1 - Kurths, Jürgen T1 - Tipping elements of the Indian monsoon: Prediction of onset and withdrawal JF - Geophysical research letters N2 - Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL068392 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 3982 EP - 3990 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Koseska, Aneta A1 - Zaikin, Alexey A1 - Kurths, Jürgen A1 - García-Ojalvo, Jordi T1 - Timing cellular decision making under noise via cell-cell communication N2 - Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words , the summation performed by the cell population would average out the noise and reduce its detrimental impact. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 148 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45260 ER -