TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays JF - Journal of applied geophysics N2 - We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Lobnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Lobnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (similar to 0.6-35 Hz at Horstwalde and similar to 1.5-25 Hz at Lobnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the dispersion curves. Within the uncertainty given by the apparent spread of forward models we find that besides a well defined sediment velocity range also a reasonable minimum estimate of bedrock depth and bedrock velocity can be achieved. The Vs estimate for the best model in Horstwalde ranges from similar to 190 m/s at the surface up to similar to 390 m/s in the bottom of the soft sediment column. The bedrock starts earliest around 200 m depth and bedrock velocities are higher than 1000 m/s. In Lobnitz, we observe slightly lower velocities for the sediments (similar to 165-375 m/s for the best model) and a minimum thickness of 75 m. (C) 2016 Elsevier B.V. All rights reserved. KW - Active seismic KW - Passive seismic KW - Virtual active seismic KW - Dispersion curves KW - Inversion KW - V-s profiles Y1 - 2016 U6 - https://doi.org/10.1016/j.jappgeo.2016.03.034 SN - 0926-9851 SN - 1879-1859 VL - 130 SP - 37 EP - 52 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Händel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Extracting near-surface Q(L) between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece JF - Geophysical journal international N2 - Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (> 1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings < 2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C-3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C-3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C-3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors Q(L). The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient gamma and Q(L) can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area. KW - Interferometry KW - Coda waves KW - Seismic attenuation Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw295 SN - 0956-540X SN - 1365-246X VL - 207 SP - 655 EP - 666 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lontsi, Agostiny Marrios A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Sánchez-Sesma, Francisco José T1 - Combining surface-wave phase-velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization JF - Interpretation : a journal of subsurface characterization N2 - We compute seismic velocity profiles by a combined inversion of surface-wave phase-velocity dispersion curves together with the full spectrum of the microtremor horizontal-to-vertical (H/V) spectral ratio at two sediment-covered sites in Germany. The sediment deposits are approximately 100 m thick at the first test site and approximately 400 m thick at the second test site. We have used an extended physical model based on the diffuse wavefield assumption for the interpretation of the observed microtremor H/V spectral ratio. The extension includes the interpretation of the microtremor H/V spectral ratio observed at depth (in boreholes). This full-wavefield approach accounts for the energy contribution from the body and surface waves, and thus it allows for inverting the properties of the shallow subsurface. We have obtained the multimode phase velocity dispersion curves from an independent study, and a description of the extracted branches and their interpretation was developed. The inversion results indicate that the combined approach using seismic ambient noise and actively generated surface-wave data will improve the accuracy of the reconstructed near-surface velocity model, a key step in microzonation, geotechnical engineering, seismic statics corrections, and reservoir imaging. Y1 - 2016 U6 - https://doi.org/10.1190/INT-2016-0021.1 SN - 2324-8858 SN - 2324-8866 VL - 4 SP - SQ41 EP - SQ49 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Kulikova, Galina A1 - Schurr, Bernd A1 - Krüger, Frank A1 - Brzoska, Elisabeth A1 - Heimann, Sebastian T1 - Source parameters of the Sarez-Pamir earthquake of 1911 February 18 JF - Geophysical journal international N2 - The Ms ∼ 7.7 Sarez-Pamir earthquake of 1911 February 18 is the largest instrumentally recorded earthquake in the Pamir region. It triggered one of the largest landslides of the past century, building a giant natural dam and forming Lake Sarez. As for many strong earthquakes from that time, information about source parameters of the Sarez-Pamir earthquake is limited due to the sparse observations. Here, we present the analysis of analogue seismic records of the Sarez-Pamir earthquake. We have collected, scanned and digitized 26 seismic records from 13 stations worldwide to relocate the epicentre and determine the event's depth (∼26 km) and magnitude (mB7.3 and Ms7.7). The unusually good quality of the digitized waveforms allowed their modelling, revealing an NE-striking sinistral strike-slip focal mechanism in accordance with regional tectonics. The shallow depth and magnitude (Mw7.3) of the earthquake were confirmed. Additionally, we investigated the possible contribution of the landslide to the waveforms and present an alternative source model assuming the landslide and earthquake occurred in close sequence. KW - Earthquake source observations KW - Seismicity and tectonics KW - Body waves KW - Theoretical seismology Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw069 SN - 0956-540X SN - 1365-246X VL - 205 SP - 1086 EP - 1098 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Lange, Dietrich A1 - Bedford, J. R. A1 - Moreno, M. A1 - Tilmann, F. A1 - Báez, Juan Carlos A1 - Bevis, M. A1 - Krüger, Frank T1 - Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011 JF - Geophysical journal international N2 - We focus on the relation between seismic and total postseismic afterslip following the Maule M-w 8.8 earthquake on 2010 February 27 in central Chile. First, we calculate the cumulative slip released by aftershock seismicity. We do this by summing up the aftershock regions and slip estimated from scaling relations. Comparing the cumulative seismic slip with afterslip modelswe showthat seismic slip of individual aftershocks exceeds locally the inverted afterslip model from geodetic constraints. As the afterslip model implicitly contains the displacements from the aftershocks, this reflects the tendency of afterslip models to smear out the actual slip pattern. However, it also suggests that locally slip for a number of the larger aftershocks exceeds the aseismic slip in spite of the fact that the total equivalent moment of the afterslip exceeds the cumulative moment of aftershocks by a large factor. This effect, seen weakly for the Maule 2010 and also for the Tohoku 2011 earthquake, can be explained by taking into account the uncertainties of the seismicity and afterslip models. In spite of uncertainties, the hypocentral region of the Nias 2005 earthquake is suggested to release a large fraction of moment almost purely seismically. Therefore, these aftershocks are not driven solely by the afterslip but instead their slip areas have probably been stressed by interseismic loading and the mainshock rupture. In a second step, we divide the megathrust of the Maule 2010 rupture into discrete cells and count the number of aftershocks that occur within 50 km of the centre of each cell as a function of time. We then compare this number to a time-dependent afterslip model by defining the 'afterslip to aftershock ratio' (ASAR) for each cell as the slope of the best fitting line when the afterslip at time t is plotted against aftershock count. Although we find a linear relation between afterslip and aftershocks for most cells, there is significant variability in ASAR in both the downdip and along-strike directions of the megathrust. We compare the spatial distribution of ASAR with the spatial distribution of seismic coupling, coseismic slip and Bouguer gravity anomaly, and in each case we find no significant correlation. KW - Creep and deformation KW - Earthquake dynamics KW - Seismicity and tectonics KW - Continental margins: convergent Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu292 SN - 0956-540X SN - 1365-246X VL - 199 IS - 2 SP - 784 EP - 799 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank T1 - Moho depth across the Trans-European Suture Zone from P- and S-receiver functions JF - Geophysical journal international N2 - The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P-and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal vP/vS ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30 km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal v(P)/v(S) ratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. KW - Body waves KW - Cratons KW - Crustal structure KW - Europe Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu035 SN - 0956-540X SN - 1365-246X VL - 197 IS - 2 SP - 1048 EP - 1075 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Czuba, Wojciech A1 - Grad, Marek A1 - Mjelde, Rolf A1 - Guterch, Aleksander A1 - Libak, Audun A1 - Krüger, Frank A1 - Murai, Yoshio A1 - Schweitzer, Johannes T1 - Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea JF - Geophysical journal international N2 - P>A 410 km long Ocean Bottom Seismometer profile spanning from the Bear Island, Barents Sea to oceanic crust formed along the Mohns Ridge has been modelled by use of ray-tracing with regard to observed P-waves. The northeastern part of the model represents typical continental crust, thinned from ca. 30 km thickness beneath the Bear Island to ca. 13 km within the Continent-Ocean-Transition. Between the Hornsund FZ and the Kn circle divide legga Fault, a 3-4 km thick sedimentary basin, dominantly of Permian/Carboniferous age, is modelled beneath the ca. 1.5 km thick layer of volcanics (Vestbakken Volcanic Province). The P-wave velocity in the 3-4 km thick lowermost continental crust is significantly higher than normal (ca. 7.5 km s-1). We interpret this layer as a mixture of mafic intrusions and continental crystalline blocks, dominantly related to the Paleocene-Early Eocene rifting event. The crystalline portion of the crust within the south-western part of the COT consists of a ca. 30 km wide and ca. 6 km thick high-velocity (7.3 km s-1) body. We interpret the body as a ridge of serpentinized peridotites. The magmatic portion of the ocean crust accreted along the Knipovich Ridge from continental break-up at ca. 35 Ma until ca. 20 Ma is 3-5 km thicker than normal. We interpret the increased magmatism as a passive response to the bending of this southernmost part of the Knipovich Ridge. The thickness of the magmatic portion of the crust formed along the Mohns Ridge at ca. 20 Ma decreases to ca. 3 km, which is normal for ultra slow spreading ridges. KW - Controlled source seismology KW - Dynamics of lithosphere and mantle KW - Crustal structure KW - Atlantic Ocean Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-246X.2010.04873.x SN - 0956-540X VL - 184 IS - 2 SP - 541 EP - 554 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Donner, Stefanie A1 - Krüger, Frank A1 - Roessler, Dirk A1 - Ghods, Abdolreza T1 - Combined Inversion of broadband and short-period waveform data for regional moment tensors: A case study in the Alborz Mountains, Iran JF - Bulletin of the Seismological Society of America N2 - In this study, we suggest a novel approach for the retrieval of regional moment tensors for earthquakes with small to moderate magnitudes. The first modification is the combined inversion of broadband and short-period waveform data. The broadband waveforms are inverted in a frequency range suitable for surface waves, whereas for the short-period data a frequency range suitable for body waves is applied. The second modification is the use of first-motion body-wave polarities to select the most probable solution out of all solutions from inversion. To combine three different criteria for selecting the most probable solution (i.e., residual from inversion, double-couple content of solution, number of nonmatching first-motion body-wave polarities), the L2 norm is applied to the normalized parameters. We chose five earthquakes within the Alborz mountains, Iran, as a case study (3.1 <= M-w <= 4.1). In this area, several factors exacerbate the difficulty of performing inversion for moment tensors, for example, a heterogeneous station network and large azimuthal gaps. We have demonstrated that our approach supplies reliable moment tensors when inversion from broadband data alone fails. In one case, we successfully retrieved a stable solution from short-period waveform data alone. Thus, our approach enables successful determination of seismic moment tensors wherever a sparse network of broadband stations has thus far prevented it. Y1 - 2014 U6 - https://doi.org/10.1785/0120130229 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 3 SP - 1358 EP - 1373 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Krüger, Frank A1 - Scherbaum, Frank T1 - The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters JF - Bulletin of the Seismological Society of America N2 - The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s). Y1 - 2014 U6 - https://doi.org/10.1785/0120130209 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 1 SP - 576 EP - 581 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Alinaghi, Alireza A1 - Kruger, Frank T1 - Seismic array analysis and redetermination of depths of earthquakes in Tien-Shan: implications for strength of the crust and lithosphere JF - Geophysical journal international N2 - We have redetermined focal depths of moderate and major earthquakes with reported lower-crust and upper-mantle depths that have occurred in Tien-Shan, since the availability of broad-band array data. Records of earthquakes at global arrays have been used for identification and modelling of depth phases in order to make accurate estimation of focal depths. Our results show that half of the purportedly deep earthquakes are indeed originating from depths attributable to middle-crust and lower-crust regions. Also one exceptional event in the northern foreland of Tien-Shan in Junggar Basin is located in the upper mantle at the depth of 64 km. Such unusually deep earthquakes for intraplate continental tectonic domain are all located at the margin of Tien-Shan with its adjacent stable blocks and at least some of them have occurred where the brittle behaviour of continental rocks is not highly expected. The reverse mechanisms of all these earthquakes and their proximity to formerly subducting and later colliding and underplating stable blocks and their interactions with overlying Tien-Shan are clues to explain this extremity. KW - Earthquake source observations KW - Seismicity and tectonics KW - Body waves Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggu141 SN - 0956-540X SN - 1365-246X VL - 198 IS - 2 SP - 1111 EP - 1129 PB - Oxford Univ. Press CY - Oxford ER -