TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 PB - Springer Nature CY - London ER - TY - GEN A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 387 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402712 ER - TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nano-wires filled with metal nano-particles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro-or macroscale elements is hampered by the lack of structural components that have both, nano-and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 SP - 3759 EP - 3764 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schimka, Selina A1 - Lomadze, Nino A1 - Rabe, Maren A1 - Kopyshev, Alexey A1 - Lehmann, Maren A1 - von Klitzing, Regine A1 - Rumyantsev, Artem M. A1 - Kramarenko, Elena Yu. A1 - Santer, Svetlana T1 - Photosensitive microgels containing azobenzene surfactants of different charges JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans- state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp04555c SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 108 EP - 117 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schimka, Selina A1 - Lomadze, Nino A1 - Rabe, Maren A1 - Kopyshev, Alexey A1 - Lehmann, Maren A1 - von Klitzing, Regine A1 - Rumyantsev, Artem M. A1 - Kramarenko, Elena Yu. A1 - Santer, Svetlana T1 - Photosensitive microgels containing azobenzene surfactants of different charges T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans-state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 461 KW - ph-responsive microgels KW - co-monomer content KW - drug-delivery KW - photoresponsive surfactants KW - metal nanoparticles KW - swelling behavior KW - temperature KW - particles KW - collapse KW - hydrogels Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413528 SN - 1866-8372 IS - 461 ER -