TY - JOUR A1 - Kleinpeter, Erich A1 - Werner, Peter A1 - Koch, Andreas T1 - Push-pull allenes-conjugation, (anti)aromaticity and quantification of the push-pull character JF - Tetrahedron N2 - Structures, H-1/C-13 chemical shifts, and pi electron distribution/conjugation of an experimentally available and theoretically completed set of push-pull allenes Acc(2)C=C=CDon(2) (Acc=F, CHO, CF3, C N; Don=t-Bu, OMe, OEt, SMe, SEt, NCH2R) have been computed at the OFT level of theory. Both orthogonal linear and orthogonal bent structures have been obtained. In the latter case the push-pull character could be quantified by the quotient method. The C-13 chemical shift of the central allene carbon atom C-2 and chemical shift differences Delta delta(C-1, C-2) and Delta delta(C-2, C-3) of allene carbon atoms proved to be a quantitative alternative. TSNMRS of ring-closed push-pull allenes have been computed in addition and were employed to identify polar, carbene-like and carbone-like canonical structures of these molecules. KW - Push-pull allenes KW - Push-pull character KW - C-13 NMR spectroscopy KW - Quotient method KW - TSNMRS KW - ICSS KW - Aromaticity Y1 - 2013 U6 - https://doi.org/10.1016/j.tet.2013.01.027 SN - 0040-4020 VL - 69 IS - 11 SP - 2436 EP - 2445 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zborowski, Krzysztof Kazimierz A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Proniewicz, Leonard Marian T1 - Searching for aromatic celate rings. Oxygen versus Thio and Seleno Ligands JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium. KW - Aromaticity KW - Chelatoaromaticity KW - Copper Metal Complexes KW - Quantum Chemical Calculations Y1 - 2014 U6 - https://doi.org/10.1515/zpch-2014-0528 SN - 0942-9352 VL - 228 IS - 8 SP - 869 EP - 878 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization? JF - Tetrahedron N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved. KW - Through-space NMR shieldings (TSNMRS) KW - GIAO KW - NICS KW - Benzenoid structures KW - Cyanine/merocyanine-like structures KW - Aromaticity Y1 - 2017 U6 - https://doi.org/10.1016/j.tet.2017.05.062 SN - 0040-4020 VL - 73 SP - 4265 EP - 4274 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Paramagnetic ring current effects in anti-aromatic structures subject to substitution/annelation quantified by spatial magnetic properties (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of the typically anti-aromatic cyclopentadienyl cation, cyclobutadiene, pentalene, s-indacene and of substituted/annelated analogues of the latter structures have been calculated using the CIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to visualize and quantify the dia(para) magnetic ring current effects in the studied compounds. The interplay of dia(para)magnetic ring current effects due to substitution/annelation caused by heavy exo-cyclic n,pi-electron delocalization can be qualified. KW - Aromaticity KW - Anti-aromaticity KW - Through-space NMR shieldings (TSNMRS) KW - GIAO KW - NICS KW - Annelation effect Y1 - 2018 U6 - https://doi.org/10.1016/j.tet.2017.12.020 SN - 0040-4020 VL - 74 IS - 7 SP - 700 EP - 710 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Cyclazines-structure and aromaticity or antiaromaticity on the magnetic criterion JF - European journal of organic chemistry N2 - Structure and spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of all ten cycl[2.2.2]azine to cycl[4.4.4]azine, hetero-analogues and the corresponding hydrocarbons have been calculated at the B3LYP/6-311G(d,p) theory level using the GIAO perturbation method and employing the nucleus independent chemical shift (NICS) concept. The TSNMRS values (actually, the ring current effect as measurable in H-1 NMR spectroscopy) are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction, and employed to readily qualify and quantify the degree of (anti)aromaticity. Results are confirmed by NMR [delta(H-1)/ppm, delta(N-15)/ppm] and geometry (planar, twisted, bow-shaped) data. The cyclazines N[2.2.2](-) up to N[2.4.4](-) are planar or at most slightly bowl-shaped and, due to coherent peripheral ring currents (except in N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+)), develop aromaticity or anti-aromaticity of the whole molecules dependent on the number of peripheral conjugated pi electrons. The cyclazines N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+) develop two ring currents of different direction within the same molecule, in which the dominating ring current proves to be paratropic (in N[3.3.4](+) diatropic) including the nodal N p(z) lone pair into the conjugation. The residual cyclazines N[3.4.4], N[4.4.4](-) and N[4.4.4](+) are heavily twisted and, therefore, are not developing peripheral or diverse ring currents. The TSNMRS information about cyclazines and the parent tricyclic annulene analogues is congruent subject to structure and number of peripheral or internal conjugated pi electrons, the corresponding (anti)aromaticity is in unequivocal accordance with Huckel's rule. KW - Aromaticity KW - Cyclazines KW - NMR spectroscopy KW - Peripheral ring current Y1 - 2022 U6 - https://doi.org/10.1002/ejoc.202101362 SN - 1434-193X SN - 1099-0690 VL - 2022 IS - 8 PB - Wiley-VCH CY - Weinheim ER -