TY - JOUR A1 - Gerecke, Christian A1 - Scholtka, Bettina A1 - Loewenstein, Yvonne A1 - Fait, Isabel A1 - Gottschalk, Uwe A1 - Rogoll, Dorothee A1 - Melcher, Ralph A1 - Kleuser, Burkhard T1 - Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer JF - Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft N2 - Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer. Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9). A high methylation frequency of VIM (55.6 %) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD). The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer. KW - Epigenetic KW - DNA methylation KW - Colon cancer KW - Colitis KW - Gastrointestinal tract KW - Biomarker Y1 - 2015 U6 - https://doi.org/10.1007/s00432-015-1972-8 SN - 0171-5216 SN - 1432-1335 VL - 141 IS - 12 SP - 2097 EP - 2107 PB - Springer CY - New York ER - TY - JOUR A1 - Schumacher, Fabian A1 - Chakraborty, Sudipta A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - Bornhorst, Julia T1 - Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans JF - Talanta : the international journal of pure and applied analytical chemistry N2 - Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved. KW - Caenorhabditis elegans KW - Dopamine KW - Serotonin KW - Liquid chromatography-tandem mass spectrometry KW - Isotope-dilution analysis Y1 - 2015 U6 - https://doi.org/10.1016/j.talanta.2015.05.057 SN - 0039-9140 SN - 1873-3573 VL - 144 SP - 71 EP - 79 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nojima, Hiroyuki A1 - Freeman, Christopher M. A1 - Schuster, Rebecca M. A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Edwards, Michael J. A1 - Gulbins, Erich A1 - Lentsch, Alex B. T1 - Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate JF - Journal of hepatology N2 - Background & Aims: Exosomes are small membrane vesicles involved in intercellular communication. Hepatocytes are known to release exosomes, but little is known about their biological function. We sought to determine if exosomes derived from hepatocytes contribute to liver repair and regeneration after injury. Methods: Exosomes derived from primary murine hepatocytes were isolated and characterized biochemically and biophysically. Using cultures of primary hepatocytes, we tested whether hepatocyte exosomes induced proliferation of hepatocytes in vitro. Using models of ischemia/reperfusion injury and partial hepatectomy, we evaluated whether hepatocyte exosomes promote hepatocyte proliferation and liver regeneration in vivo. Results: Hepatocyte exosomes, but not exosomes from other liver cell types, induce dose-dependent hepatocyte proliferation in vitro and in vivo. Mechanistically, hepatocyte exosomes directly fuse with target hepatocytes and transfer neutral ceramidase and sphingosine kinase 2 (SK2) causing increased synthesis of sphingosine-1-phosphate (S1P) within target hepatocytes. Ablation of exosomal SK prevents the proliferative effect of exosomes. After ischemia/reperfusion injury, the number of circulating exosomes with proliferative effects increases. Conclusions: Our data shows that hepatocyte-derived exosomes deliver the synthetic machinery to form S1P in target hepatocytes resulting in cell proliferation and liver regeneration after ischemia/reperfusion injury or partial hepatectomy. These findings represent a potentially novel new contributing mechanism of liver regeneration and have important implications for new therapeutic approaches to acute and chronic liver disease. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. KW - Liver injury KW - Sphingolipids KW - Sphingosine kinase KW - Ischemia/reperfusion KW - Transplantation Y1 - 2016 U6 - https://doi.org/10.1016/j.jhep.2015.07.030 SN - 0168-8278 SN - 1600-0641 VL - 64 SP - 60 EP - 68 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sahle, Fitsum Feleke A1 - Balzus, Benjamin A1 - Gerecke, Christian A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential JF - European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS N2 - pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550 nm-sized dexamethasone-loaded Eudragit L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 83% and 85%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10 mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH 6) and a higher buffer capacity. In 40 mM buffer and above pH 6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared. (C) 2016 Elsevier B.V. All rights reserved. KW - Dexamethasone KW - Enteric polymer KW - Eudragit L 100 KW - pH-sensitive nanoparticles KW - Skin nanocarrier KW - Erosion kinetics Y1 - 2016 U6 - https://doi.org/10.1016/j.ejps.2016.07.004 SN - 0928-0987 SN - 1879-0720 VL - 92 SP - 98 EP - 109 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Balzus, Benjamin A1 - Sahle, Fitsum Feleke A1 - Hönzke, Stefan A1 - Gerecke, Christian A1 - Schumacher, Fabian A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium JF - European journal of pharmaceutics and biopharmaceutics : EJPB ; official journal of the International Association for Pharmaceutical Technology N2 - Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3–0.7%) than ethyl cellulose nanoparticles (1.4–2.2%). By blending the two polymers (1:1), small (105 nm), positively charged (+37 mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness. KW - Dermal delivery KW - Dexamethasone KW - Ethyl cellulose KW - Eudragit (R) RS KW - Ocular delivery KW - Polymeric nanoparticle Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2017.02.001 SN - 0939-6411 SN - 1873-3441 VL - 115 SP - 122 EP - 130 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sahle, Fitsum Feleke A1 - Gerecke, Christian A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications JF - International Journal of Pharmaceutics N2 - pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit (R) L 100, Eudragit (R) L 100-55, Eudragit (R) S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700 nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10 mM pH 7.5 buffer and released > 80% of the drug within 7 h. The acrylate nanoparticles dissolved in 40 mM pH 7.5 buffer and released 65-70% of the drug within 7 h. The nanoparticles remained intact in 10 and 40 mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40 mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. KW - Cellulose acetate phthalate KW - Dexamethasone KW - Eudragit (R) KW - HPMCP KW - pH-sensitive nanoparticle KW - Skin nanocarrier Y1 - 2016 U6 - https://doi.org/10.1016/j.ijpharm.2016.11.029 SN - 0378-5173 SN - 1873-3476 VL - 516 IS - 1-2 SP - 21 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hausmann, Christian A1 - Zoschke, Christian A1 - Wolff, Christopher A1 - Darvin, Maxim E. A1 - Sochorova, Michaela A1 - Kovacik, Andrej A1 - Wanjiku, Barbara A1 - Schumacher, Fabian A1 - Tigges, Julia A1 - Kleuser, Burkhard A1 - Lademann, Juergen A1 - Fritsche, Ellen A1 - Vavrova, Katerina A1 - Ma, Nan A1 - Schaefer-Korting, Monika T1 - Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake JF - Scientific reports N2 - Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-yearolds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-39770-6 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - Nitezki, Tina A1 - Kleuser, Burkhard A1 - Krämer, Stephanie T1 - Fatal gastric distension in a gold thioglucose mouse model of obesity JF - Laboratory Animals N2 - This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe. KW - appetite KW - distress KW - refinement KW - mortality Y1 - 2018 U6 - https://doi.org/10.1177/0023677218803384 SN - 0023-6772 SN - 1758-1117 VL - 53 IS - 1 SP - 89 EP - 94 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Böhm, Andreas A1 - Flößer, Anja A1 - Ermler, Swen A1 - Fender, Anke C. A1 - Lüth, Anja A1 - Kleuser, Burkhard A1 - Schrör, Karsten A1 - Rauch, Bernhard H. T1 - Factor-Xa-induced mitogenesis and migration require sphingosine kinase activity and S1P formation in human vascular smooth muscle cells JF - Cardiovascular research N2 - Sphingosine-1-phosphate (S1P) is a cellular signalling lipid generated by sphingosine kinase-1 (SPHK1). The aim of the study was to investigate whether the activated coagulation factor-X (FXa) regulates SPHK1 transcription and the formation of S1P and subsequent mitogenesis and migration of human vascular smooth muscle cells (SMC). FXa induced a time- (36 h) and concentration-dependent (330 nmol/L) increase of SPHK1 mRNA and protein expression in human aortic SMC, resulting in an increased synthesis of S1P. FXa-stimulated transcription of SPHK1 was mediated by the protease-activated receptor-1 (PAR-1) and PAR-2. In human carotid artery plaques, expression of SPHK1 was observed at SMC-rich sites and was co-localized with intraplaque FX/FXa content. FXa-induced SPHK1 transcription was attenuated by inhibitors of Rho kinase (Y27632) and by protein kinase C (PKC) isoforms (GF109203X). In addition, FXa rapidly induced the activation of the small GTPase Rho A. Inhibition of signalling pathways which regulate SPHK1 expression, inhibition of its activity or siRNA-mediated SPHK1 knockdown attenuated the mitogenic and chemotactic response of human SMC to FXa. These data suggest that FXa induces SPHK1 expression and increases S1P formation independent of thrombin and that this involves the activation of Rho A and PKC signalling. In addition to its key function in coagulation, this direct effect of FXa on human SMC may increase cell proliferation and migration at sites of vessel injury and thereby contribute to the progression of vascular lesions. KW - Factor-Xa KW - Atherosclerosis KW - Proliferation KW - Smooth muscle cells KW - Sphingosine kinase-1 Y1 - 2013 U6 - https://doi.org/10.1093/cvr/cvt112 SN - 0008-6363 VL - 99 IS - 3 SP - 505 EP - 513 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kakkassery, Vinodh A1 - Skosyrski, S. A1 - Lüth, A. A1 - Kleuser, Burkhard A1 - van der Giet, Maria A1 - Tate, R. A1 - Reinhard, J. A1 - Faissner, Andreas A1 - Joachim, Stephanie Christine A1 - Kociok, N. T1 - Etoposide Upregulates Survival Favoring Sphingosine-1-Phosphate in Etoposide-Resistant Retinoblastoma Cells JF - Pathology & Oncology Research N2 - Improved knowledge of retinoblastoma chemotherapy resistance is needed to raise treatment efficiency. The objective of this study was to test whether etoposide alters glucosyl-ceramide, ceramide, sphingosine, and sphingosine-1-phosphate (sphingosine-1-P) levels in parental retinoblastoma cells (WERI Rb1) or their etoposide-resistant subclones (WERI EtoR). WERI Rb1 and WERI EtoR were incubated with 400 ng/ml etoposide for 24 h. Levels of glucosyl-ceramides, ceramides, sphingosine, sphingosine-1-P were detected by Q-TOF mass spectrometry. Statistical analysis was done by ANOVA followed by Tukey post-hoc test (p < 0.05). The mRNA expression of sphingolipid pathways enzymes in WERI Rb1, WERI EtoR and four human retinoblastoma tissue samples was analyzed by quantitative real-time PCR. Pathways enzymes mRNA expression confirmed similarities of human sphingolipid metabolism in both cell lines and tissue samples, but different relative expression. Significant up-regulation of sphingosine was seen in both cell lines (p < 0.001). Only sphingosine-1-P up-regulation was significantly increased in WERI EtoR (p < 0.01), but not in WERI Rb1 (p > 0.2). Both cell lines upregulate pro-apoptotic sphingosine after etoposide incubation, but only WERI EtoR produces additional survival favorable sphingosine-1-P. These data may suggest a role of sphingosine-1-P in retinoblastoma chemotherapy resistance, although this seems not to be the only resistance mechanism. KW - Retinoblastoma KW - Sphingosine-1-phosphate KW - Chemotherapy resistance Y1 - 2017 U6 - https://doi.org/10.1007/s12253-017-0360-x SN - 1219-4956 SN - 1532-2807 VL - 25 IS - 1 SP - 391 EP - 399 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Döge, Nadine A1 - Hönzke, Stefan A1 - Schumacher, Fabian A1 - Balzus, Benjamin A1 - Colombo, Miriam A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Schäfer-Korting, Monika A1 - Schindler, Anke A1 - Rühl, Eckart A1 - Skov, Per Stahl A1 - Church, Martin K. A1 - Hedtrich, Sarah A1 - Kleuser, Burkhard A1 - Bodmeier, Roland A1 - Vogt, Annika T1 - Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers JF - Journal of controlled release N2 - Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-termex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24 h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24 h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6 h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45 kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. (C) 2016 Elsevier B.V. All rights reserved. KW - Drug delivery systems KW - Polymeric nanoparticles KW - Dexamethasone KW - Microdialysis KW - Skin penetration KW - Skin barrier disruption Y1 - 2016 U6 - https://doi.org/10.1016/j.jconrel.2016.07.009 SN - 0168-3659 SN - 1873-4995 VL - 242 SP - 25 EP - 34 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wetzel, Alexandra Nicole A1 - Scholtka, Bettina A1 - Gerecke, Christian A1 - Kleuser, Burkhard T1 - Epigenetic histone modulation contributes to improvements in inflammatory bowel disease via EBI3 JF - Cellular and molecular life sciences N2 - Ulcerative colitis (UC) is characterized by relapsing-remitting inflammatory episodes paralleled by varying cytokine levels, suggesting that switching epigenetic processes might be involved. However, the epigenetic impact on cytokine levels in colitis is mostly unexplored. The heterodimeric interleukin (IL)-12 cytokine family have various functions in both pro- and anti-inflammatory processes. The family member IL-35 (EBI3/IL-12p35) was recently reported to play an anti-inflammatory role in UC. Therefore, we aimed to investigate a possible epigenetic regulation of the IL-35 subunits in vitro and in vivo, and to examine the epigenetic targeting of EBI3 expression as a therapeutic option for UC. Exposure to either the pro-inflammatory TNF alpha or to histone deacetylase inhibitors (HDACi) significantly increased EBI3 expression in Human Colon Epithelial Cells (HCEC) generated from healthy tissue. When applied in combination, a drastic upregulation of EBI3 expression occurred, suggesting a synergistic mechanism. Consequently, IL-35 was increased as well. In vivo, the intestines of HDACi-treated wild-type mice exhibited reduced pathological signs of colitis compared to non-treated colitic mice. However, the improvement by HDACi treatment was completely lost in Ebi3-deficient mice (Ebi3(-/-)). In fact, HDACi appeared to exacerbate the disease phenotype in Ebi3(-/-). In conclusion, our results reveal that under inflammatory conditions, EBI3 is upregulated by the epigenetic mechanism of histone acetylation. The in vivo data show that the deficiency of EBI3 plays a key role in colitis manifestation. Concordantly, our data suggest that conditions promoting histone acetylation, such as upon HDACi application, improve colitis by a mechanism involving the local formation of the anti-inflammatory cytokine IL-35. KW - Histone deacetylase inhibitor KW - Inhibitory cytokines KW - Interleukin-35 KW - SAHA KW - Ulcerative colitis Y1 - 2020 U6 - https://doi.org/10.1007/s00018-020-03451-9 SN - 1420-682X SN - 1420-9071 VL - 77 IS - 23 SP - 5017 EP - 5030 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Wetzel, Alexandra Nicole A1 - Scholtka, Bettina A1 - Schumacher, Fabian A1 - Rawel, Harshadrai Manilal A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard T1 - Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling BT - a promising therapeutic option in ulcerative colitis JF - International journal of molecular sciences N2 - Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis. KW - decitabine KW - DNMT inhibitor KW - EBI3 KW - inhibitory cytokines KW - interleukin-35 KW - TNF alpha KW - Ulcerative colitis Y1 - 2021 U6 - https://doi.org/10.3390/ijms22105329 SN - 1422-0067 VL - 22 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Hönzke, Stefan A1 - Bergueiro, Julián A1 - Işık, Doğuş A1 - Schumacher, Fabian A1 - Saeidpour, Siavash A1 - Lohan, Silke A1 - Meinke, Martina A1 - Teutloff, Christian A1 - Schäfer-Korting, Monika A1 - Yealland, Guy A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderón, Marcelo T1 - Enhanced topical delivery of dexamethasone by beta-cyclodextrin decorated thermoresponsive nanogels JF - Nanoscale N2 - Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream. Y1 - 2017 U6 - https://doi.org/10.1039/c7nr04480a SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 1 SP - 469 EP - 479 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schraplau, Anne A1 - Schewe, Bettina A1 - Neuschäfer-Rube, Frank A1 - Ringel, Sebastian A1 - Neuber, Corinna A1 - Kleuser, Burkhard A1 - Püschel, Gerhard Paul T1 - Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital JF - Toxicology N2 - Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. (C) 2014 Elsevier Ireland Ltd. All rights reserved. KW - Endocrine disruption KW - Xenobesity KW - Aryl-hydrocarbon receptor KW - Cyp2b1 KW - Thyroid hormone KW - UDP-glucuronosyltransferase Y1 - 2015 U6 - https://doi.org/10.1016/j.tox.2014.12.004 SN - 0300-483X VL - 328 SP - 21 EP - 28 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Kachler, Katerina A1 - Bailer, Maximilian A1 - Heim, Lisanne A1 - Schumacher, Fabian A1 - Reichel, Martin A1 - Holzinger, Corinna D. A1 - Trump, Sonja A1 - Mittler, Susanne A1 - Monti, Juliana A1 - Trufa, Denis I. A1 - Rieker, Ralf J. A1 - Hartmann, Arndt A1 - Sirbu, Horia A1 - Kleuser, Burkhard A1 - Kornhuber, Johannes A1 - Finotto, Susetta T1 - Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma JF - Cancer research N2 - The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and-extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. (C) 2017 AACR. Y1 - 2017 U6 - https://doi.org/10.1158/0008-5472.CAN-16-3313 SN - 0008-5472 SN - 1538-7445 VL - 77 IS - 21 SP - 5963 EP - 5976 PB - American Association for Cancer Research CY - Philadelphia ER - TY - JOUR A1 - Henry, Brian D. A1 - Neill, Daniel R. A1 - Becker, Katrin Anne A1 - Gore, Suzanna A1 - Bricio-Moreno, Laura A1 - Ziobro, Regan A1 - Edwards, Michael J. A1 - Muehlemann, Kathrin A1 - Steinmann, Joerg A1 - Kleuser, Burkhard A1 - Japtok, Lukasz A1 - Luginbuehl, Miriam A1 - Wolfmeier, Heidi A1 - Scherag, Andre A1 - Gulbins, Erich A1 - Kadioglu, Aras A1 - Draeger, Annette A1 - Babiychuk, Eduard B. T1 - Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice JF - Nature biotechnology : the science and business of biotechnology N2 - Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance. Y1 - 2015 U6 - https://doi.org/10.1038/nbt.3037 SN - 1087-0156 SN - 1546-1696 VL - 33 IS - 1 SP - 81 EP - U295 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Bhabak, Krishna P. A1 - Kleuser, Burkhard A1 - Huwiler, Andrea A1 - Arenz, Christoph T1 - Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues JF - Bioorganic & medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines N2 - Induction of apoptosis mediated by the inhibition of ceramidases has been shown to enhance the efficacy of conventional chemotherapy in several cancer models. Among the inhibitors of ceramidases reported in the literature, B-13 is considered as a lead compound having good in vitro potency towards acid ceramidase. Furthermore, owing to the poor activity of B-13 on lysosoamal acid ceramidase in living cells, LCL-464 a modified derivative of B-13 containing a basic omega-amino group at the fatty acid was reported to have higher potency towards lysosomal acid ceramidase in living cells. In a search for more potent inhibitors of ceramidases, we have designed a series of compounds with structural modifications of B-13 and LCL-464. In this study, we show that the efficacy of B-13 in vitro as well as in intact cells can be enhanced by suitable modification of functional groups. Furthermore, a detailed SAR investigation on LCL-464 analogues revealed novel promising inhibitors of aCDase and nCDase. In cell culture studies using the breast cancer cell line MDA-MB-231, some of the newly developed compounds elevated endogenous ceramide levels and in parallel, also induced apoptotic cell death. In summary, this study shows that structural modification of the known ceramidase inhibitors B-13 and LCL-464 generates more potent ceramidase inhibitors that are active in intact cells and not only elevates the cellular ceramide levels, but also enhances cell death. KW - Sphingolipids KW - Ceramide KW - Ceramidase inhibitors KW - Structure-activity-relationship Y1 - 2013 U6 - https://doi.org/10.1016/j.bmc.2012.12.014 SN - 0968-0896 VL - 21 IS - 4 SP - 874 EP - 882 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schoenauer, Roman A1 - Larpin, Yu A1 - Babiychuk, Eduard B. A1 - Drucker, Patrick A1 - Babiychuk, Viktoriia S. A1 - Avota, Elita A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Koffel, Rene A1 - Draeger, Annette T1 - Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drucker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Koffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins. KW - membrane repair KW - blebbing KW - calcium KW - bacterial toxins KW - annexins Y1 - 2018 U6 - https://doi.org/10.1096/fj.201800033R SN - 0892-6638 SN - 1530-6860 VL - 33 IS - 1 SP - 275 EP - 285 PB - Federation of American Societies for Experimental Biology CY - Bethesda ER -