TY - JOUR A1 - Frombach, Janna A1 - Unbehauen, Michael A1 - Kurniasih, Indah N. A1 - Schumacher, Fabian A1 - Volz, Pierre A1 - Hadam, Sabrina A1 - Rancan, Fiorenza A1 - Blume-Peytavi, Ulrike A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Vogt, Annika T1 - Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin JF - Journal of controlled release N2 - In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial. KW - Drug delivery KW - Skin penetration KW - Cellular uptake KW - Nanoparticles KW - Dendritic cells KW - High resolution microscopy Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.02.028 SN - 0168-3659 SN - 1873-4995 VL - 299 SP - 138 EP - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Edlich, Alexander A1 - Gerecke, Christian A1 - Giulbudagian, Michael A1 - Neumann, Falko A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Kleuser, Burkhard T1 - Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermore-sponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae-mediated endocytosis as being the major tNGs uptake mechanism at 37 degrees C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae-mediated endocytosis, was observed at 29 degrees C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system. KW - Dendritic cells KW - Drug delivery systems KW - Nanogel KW - Nanoparticle KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2016.12.016 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 155 EP - 163 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arlt, Olga A1 - Schwiebs, Anja A1 - Japtok, Lukasz A1 - Rueger, Katja A1 - Katzy, Elisabeth A1 - Kleuser, Burkhard A1 - Radeke, Heinfried H. T1 - Sphingosine-1-Phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Dendritic cells (DCs) are the cutting edge in innate and adaptive immunity. The major functions of these antigen presenting cells are the capture, endosomal processing and presentation of antigens, providing them an exclusive ability to provoke adaptive immune responses and to induce and control tolerance. Immature DCs capture and process antigens, migrate towards secondary lymphoid organs where they present antigens to naive T cells in a well synchronized sequence of procedures referred to as maturation. Indeed, recent research indicated that sphingolipids are modulators of essential steps in DC homeostasis. It has been recognized that sphingolipids not only modulate the development of DC subtypes from precursor cells but also influence functional activities of DCs such as antigen capture, and cytokine profiling. Thus, it is not astonishing that sphingolipids and sphingolipid metabolism play a substantial role in inflammatory diseases that are modulated by DCs. Here we highlight the function of sphingosine 1-phosphate (S1P) on DC homeostasis and the role of SIP and SW metabolism in inflammatory diseases. KW - Sphingosine-1-phosphate KW - Dendritic cells KW - Fingolimod KW - IL-12 KW - Inflammation Y1 - 2014 U6 - https://doi.org/10.1159/000362982 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 1 SP - 27 EP - 44 PB - Karger CY - Basel ER -