TY - JOUR A1 - Henze, Andrea A1 - Homann, Thomas A1 - Rohn, Isabelle A1 - Aschner, Michael A. A1 - Link, Christopher D. A1 - Kleuser, Burkhard A1 - Schweigert, Florian J. A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin JF - Scientific reports N2 - The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization – time of flight – mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling. KW - n-acetyl-cysteine KW - s-glutathionylation KW - force-field KW - c. elegans KW - life-span KW - protein KW - cells KW - menadione KW - disease KW - binding Y1 - 2016 U6 - https://doi.org/10.1038/srep37346 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Radbruch, Moritz A1 - Pischon, Hannah A1 - Ostrowski, Anja A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Neumann, Falko A1 - Unbehauen, Michael A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Ma, Nan A1 - Alexiev, Ulrike A1 - Mundhenk, Lars A1 - Gruber, Achim D. T1 - Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin JF - Nanoscale Research Letters N2 - Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin. KW - CMS KW - Skin KW - Topical treatment KW - Dermal delivery KW - Atopic dermatitis KW - Oxazolone KW - Fluorescence lifetime imaging microscopy KW - Nanomaterials KW - Multi-domain nanoparticles KW - Penetration enhancement Y1 - 2017 U6 - https://doi.org/10.1186/s11671-017-1835-0 SN - 1556-276X VL - 12 IS - 64 PB - Springer CY - New York ER - TY - JOUR A1 - Edlich, Alexander A1 - Gerecke, Christian A1 - Giulbudagian, Michael A1 - Neumann, Falko A1 - Hedtrich, Sarah A1 - Schaefer-Korting, Monika A1 - Ma, Nan A1 - Calderon, Marcelo A1 - Kleuser, Burkhard T1 - Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Engineered nanogels are of high value for a targeted and controlled transport of compounds due to the ability to change their chemical properties by external stimuli. As it has been indicated that nanogels possess a high ability to penetrate the stratum corneum, it cannot be excluded that nanogels interact with dermal dendritic cells, especially in diseased skin. In this study the potential crosstalk of the thermore-sponsive nanogels (tNGs) with the dendritic cells of the skin was investigated with the aim to determine the immunotoxicological properties of the nanogels. The investigated tNGs were made of dendritic polyglycerol (dPG) and poly(glycidyl methyl ether-co-ethyl glycidyl ether) (p(GME-co-EGE)), as polymer conferring thermoresponsive properties. Although the tNGs were taken up, they displayed neither cytotoxic and genotoxic effects nor any induction of reactive oxygen species in the tested cells. Interestingly, specific uptake mechanisms of the tNGs by the dendritic cells were depending on the nanogels cloud point temperature (Tcp), which determines the phase transition of the nanoparticle. The study points to caveolae-mediated endocytosis as being the major tNGs uptake mechanism at 37 degrees C, which is above the Tcp of the tNGs. Remarkably, an additional uptake mechanism, beside caveolae-mediated endocytosis, was observed at 29 degrees C, which is the Tcp of the tNGs. At this temperature, which is characterized by two different states of the tNGs, macropinocytosis was involved as well. In summary, our study highlights the impact of thermoresponsivity on the cellular uptake mechanisms which has to be taken into account if the tNGs are used as a drug delivery system. KW - Dendritic cells KW - Drug delivery systems KW - Nanogel KW - Nanoparticle KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2017 U6 - https://doi.org/10.1016/j.ejpb.2016.12.016 SN - 0939-6411 SN - 1873-3441 VL - 116 SP - 155 EP - 163 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sahle, Fitsum Feleke A1 - Gerecke, Christian A1 - Kleuser, Burkhard A1 - Bodmeier, Roland T1 - Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications JF - International Journal of Pharmaceutics N2 - pH-sensitive nanoparticles have a great potential for dermal and transfollicular drug delivery. In this study, pH-sensitive, dexamethasone-loaded Eudragit (R) L 100, Eudragit (R) L 100-55, Eudragit (R) S 100, HPMCP-50, HPMCP-55 and cellulose acetate phthalate nanoparticles were prepared by nanoprecipitation and characterized. The pH-dependent swelling, erosion, dissolution and drug release kinetics were investigated in vitro using dynamic light scattering and Franz diffusion cells, respectively. Their toxicity potential was assessed by the ROS and MTT assays. 100-700 nm nanoparticles with high drug loading and entrapment efficiency were obtained. The nanoparticles bear no toxicity potential. Cellulose phthalates nanoparticles were more sensitive to pH than acrylates nanoparticles. They dissolved in 10 mM pH 7.5 buffer and released > 80% of the drug within 7 h. The acrylate nanoparticles dissolved in 40 mM pH 7.5 buffer and released 65-70% of the drug within 7 h. The nanoparticles remained intact in 10 and 40 mM pH 6.0 buffers (HPMCP nanoparticles dissolved in 40 mM pH 6.0 buffer) and released slowly. The nanoparticles properties could be modulated by blending the different polymers. In conclusion, various pH-sensitive nanoparticles that could release differently on the skin surface and dissolve and release in the hair follicles were obtained. KW - Cellulose acetate phthalate KW - Dexamethasone KW - Eudragit (R) KW - HPMCP KW - pH-sensitive nanoparticle KW - Skin nanocarrier Y1 - 2016 U6 - https://doi.org/10.1016/j.ijpharm.2016.11.029 SN - 0378-5173 SN - 1873-3476 VL - 516 IS - 1-2 SP - 21 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Edlich, Alexander A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Unbehauen, Michael A1 - Mundhenk, Lars A1 - Gruber, Achim D. A1 - Hedtrich, Sarah A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Kleuser, Burkhard T1 - Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin JF - Biomaterials : biomaterials reviews online N2 - Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment. (C) 2018 Elsevier Ltd. All rights reserved. KW - Core-multishell nanocarriers KW - Fluorescence lifetime imaging microscopy KW - Langerhans cells KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2018 U6 - https://doi.org/10.1016/j.biomaterials.2018.01.058 SN - 0142-9612 SN - 1878-5905 VL - 162 SP - 60 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - von Websky, Karoline A1 - Reichetzeder, Christoph A1 - Tsuprykov, Oleg A1 - Gaballa, Mohamed Mahmoud Salem Ahmed A1 - Guo, Jingli A1 - Zeng, Shufei A1 - Delic, Denis A1 - Tammen, Harald A1 - Klein, Thomas A1 - Kleuser, Burkhard A1 - Hocher, Berthold T1 - Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy JF - Kidney international : official journal of the International Society of Nephrology N2 - Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham + wild type + placebo; 5/6Nx+ wild type + placebo; 5/6Nx+ wild type + linagliptin; sham + knock out+ placebo; 5/6Nx + knock out+ placebo; 5/6Nx + knock out+ linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin beta 4 and heterogeneous nuclear ribonucleoprotein Al (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-beta 1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and GIplr-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1,YB-1,thymosin beta 4 and TGF-beta 1) influenced by DPP-4 inhibition. KW - chronic kidney disease KW - collagen I KW - fibrosis KW - Glp1r(-/-) mice KW - HNRNPA1 KW - linagliptin KW - proteomic analysis KW - TGF-beta 1 KW - thymosin beta 4 KW - YB-1 Y1 - 2019 U6 - https://doi.org/10.1016/j.kint.2019.01.010 SN - 0085-2538 SN - 1523-1755 VL - 95 IS - 6 SP - 1373 EP - 1388 PB - Elsevier CY - New York ER - TY - JOUR A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Prehn, Cornelia A1 - von Websky, Karoline A1 - Slowinski, Torsten A1 - Chen, You-Peng A1 - Yin, Liang-Hong A1 - Kleuser, Burkhard A1 - Yang, Xue-Song A1 - Adamski, Jerzy A1 - Hocher, Berthold T1 - Fetal serum metabolites are independently associated with Gestational diabetes mellitus JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel KW - Gestational diabetes KW - Metabolomics KW - Phosphatidylcholine acyl-alkyl C 32:1 KW - Proline Y1 - 2018 U6 - https://doi.org/10.1159/000487119 SN - 1015-8987 SN - 1421-9778 VL - 45 IS - 2 SP - 625 EP - 638 PB - Karger CY - Basel ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Yealland, Guy A1 - Hönzke, S. A1 - Edlich, A. A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderon, Marcelo T1 - Breaking the Barrier BT - potent anti-inflammatory activity following efficient topical delivery of etanercept using thermoresponsive nanogels JF - Theranostics N2 - Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin. KW - thermoresponsive-nanogel KW - topical KW - anti-inflammatory therapy KW - etanercept KW - skin equivalents Y1 - 2018 U6 - https://doi.org/10.7150/thno.21668 SN - 1838-7640 VL - 8 IS - 2 SP - 450 EP - 463 PB - Ivyspring International Publisher CY - Lake haven ER - TY - JOUR A1 - Nitezki, Tina A1 - Kleuser, Burkhard A1 - Krämer, Stephanie T1 - Fatal gastric distension in a gold thioglucose mouse model of obesity JF - Laboratory Animals N2 - This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe. KW - appetite KW - distress KW - refinement KW - mortality Y1 - 2018 U6 - https://doi.org/10.1177/0023677218803384 SN - 0023-6772 SN - 1758-1117 VL - 53 IS - 1 SP - 89 EP - 94 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Kakkassery, Vinodh A1 - Skosyrski, S. A1 - Lüth, A. A1 - Kleuser, Burkhard A1 - van der Giet, Maria A1 - Tate, R. A1 - Reinhard, J. A1 - Faissner, Andreas A1 - Joachim, Stephanie Christine A1 - Kociok, N. T1 - Etoposide Upregulates Survival Favoring Sphingosine-1-Phosphate in Etoposide-Resistant Retinoblastoma Cells JF - Pathology & Oncology Research N2 - Improved knowledge of retinoblastoma chemotherapy resistance is needed to raise treatment efficiency. The objective of this study was to test whether etoposide alters glucosyl-ceramide, ceramide, sphingosine, and sphingosine-1-phosphate (sphingosine-1-P) levels in parental retinoblastoma cells (WERI Rb1) or their etoposide-resistant subclones (WERI EtoR). WERI Rb1 and WERI EtoR were incubated with 400 ng/ml etoposide for 24 h. Levels of glucosyl-ceramides, ceramides, sphingosine, sphingosine-1-P were detected by Q-TOF mass spectrometry. Statistical analysis was done by ANOVA followed by Tukey post-hoc test (p < 0.05). The mRNA expression of sphingolipid pathways enzymes in WERI Rb1, WERI EtoR and four human retinoblastoma tissue samples was analyzed by quantitative real-time PCR. Pathways enzymes mRNA expression confirmed similarities of human sphingolipid metabolism in both cell lines and tissue samples, but different relative expression. Significant up-regulation of sphingosine was seen in both cell lines (p < 0.001). Only sphingosine-1-P up-regulation was significantly increased in WERI EtoR (p < 0.01), but not in WERI Rb1 (p > 0.2). Both cell lines upregulate pro-apoptotic sphingosine after etoposide incubation, but only WERI EtoR produces additional survival favorable sphingosine-1-P. These data may suggest a role of sphingosine-1-P in retinoblastoma chemotherapy resistance, although this seems not to be the only resistance mechanism. KW - Retinoblastoma KW - Sphingosine-1-phosphate KW - Chemotherapy resistance Y1 - 2017 U6 - https://doi.org/10.1007/s12253-017-0360-x SN - 1219-4956 SN - 1532-2807 VL - 25 IS - 1 SP - 391 EP - 399 PB - Springer CY - Dordrecht ER -