TY - JOUR A1 - Timmerman, Martin Jan A1 - Heeremans, Michel A1 - Kirstein, Linda A. A1 - Larsen, Bjoern Tore A1 - Spencer-Dunworth, Elizabeth-Anne A1 - Sundvoll, Bjoern T1 - Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian N2 - Early Carboniferous to Permian magmatism associated with rifting within the northern foreland of the Variscan Orogen was widespread across Europe. During the long period of magmatic activity the regional tectonic setting changed across the region from early Carboniferous extension and basin formation to a rifting-wrenching style of deformation in the late Carboniferous (Stephanian) to early Permian. Wrenching and faulting were accompanied by widespread, voluminous and episodic magmatic extrusion, intrusion and underplating. This was followed by thermal relaxation and the development of the Northern and Southern Permian Basins in later Permian times. Thermal relaxation was punctuated by a Permo- Triassic phase of extension and graben formation. Ar-40/Ar-39 Ar step-heating dating for mineral separates and whole- rock samples of magmatic rocks from southern Scandinavia (Oslo Graben and south Sweden) and Rugen (north Germany) provides further radiometric evidence for three of the proposed periods of magmatic activity in the region. Latest Carboniferous to earliest Permian ages (c. 300-310 Ma) were obtained for volcanic rocks in the Oslo Graben and dolerite sills and dykes in south Sweden and north Germany. This phase can be time-correlated with magmatic activity that occurred throughout Europe during large-scale dextral wrenching that followed the Variscan Orogeny. A second phase of alkaline intrusions is confined to the Oslo Graben and related to caldera collapse around c. 275 Ma. The third, Permo- Triassic phase (c. 250 Ma) is considered to be related to a new tectonic cycle involving extension that triggered minor melting of enriched, fertile mantle. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/00401951 U6 - https://doi.org/10.1016/j.tecto.2009.03.011 SN - 0040-1951 ER - TY - JOUR A1 - Heeremans, Michel A1 - Timmerman, Martin Jan A1 - Kirstein, Linda A. A1 - Faleide, J. I. T1 - The late carboniferous : early permian evolution of the central North Sea Y1 - 2004 ER - TY - JOUR A1 - Mortimer, Estelle A1 - Kirstein, Linda A. A1 - Stuart, Finlay M. A1 - Strecker, Manfred T1 - Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System JF - Earth & planetary science letters N2 - The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes. lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation than commonly invoked climatic fluctuations. (C) 2016 Elsevier B.V. All rights reserved. KW - apatite helium thermochronology KW - normal-fault evolution KW - fault linkage KW - East African Rift System Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.08.040 SN - 0012-821X SN - 1385-013X VL - 455 SP - 62 EP - 72 PB - Elsevier CY - Amsterdam ER -