TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Feulner, Philine G. D. A1 - Kirschbaum, Frank A1 - Schugardt, Christian A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei : Mormyridae : Campylomormyrus) N2 - For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222 bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C tamandua, there is one common EOD type, regardless of age and sex, whereas in C numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise FST values support our hypothesis that these groups are reproductively isolated. We propose that in C numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/10557903 U6 - https://doi.org/10.1016/j.ympev.2005.09.008 SN - 1055-7903 ER - TY - JOUR A1 - Apio, Ann A1 - Kabasa, John David A1 - Ketmaier, Valerio A1 - Schroeder, Christoph A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Female philopatry and male dispersal in a cryptic, bush-dwelling antelope : a combined molecular and behavioural approach N2 - In most mammals, females are philopatric while males disperse in order to avoid inbreeding. We investigated social structure in a solitary ungulate, the bushbuck Tragelaphus sylvaticus in Queen Elizabeth National Park, Uganda by combining behavioural and molecular data. We correlated spatial and social vicinity of individual females with a relatedness score obtained from mitochondrial DNA analysis. Presumed clan members shared the same haplotype, showed more socio-positive interactions and had a common home range. Males had a higher haplotype diversity than females. All this suggests the presence of a matrilineal structure in the study population. Moreover, we tested natal dispersal distances between male and female yearlings and used control region sequences to confirm that females remain in their natal breeding areas whereas males disperse. In microsatellite analysis, males showed a higher genetic variability than females. The impoverished genetic variability of females at both molecular marker sets is consistent with a philopatric and matrilineal structure, while the higher degree of genetic variability of males is congruent with a higher dispersal rate expected in this sex. Evidence even for male long-distance dispersal is brought about by one male carrying a haplotype of a different subspecies, previously not described to occur in this area. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0952-8369 U6 - https://doi.org/10.1111/j.1469-7998.2009.00654.x SN - 0952-8369 ER - TY - GEN A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea BT - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 399 KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401110 ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea JF - Frontiers in zoology N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2013 U6 - https://doi.org/10.1186/1742-9994-10-21 SN - 1742-9994 VL - 10 IS - 4-5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Tiedemann, Ralph T1 - Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae) T2 - Journal of molecular evolution N2 - Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography. KW - Bucerotidae KW - Concerted evolution KW - Control region KW - Mitochondrial gene order KW - Mitochondrial recombination KW - Philippine archipelago Y1 - 2013 U6 - https://doi.org/10.1007/s00239-013-9591-y SN - 0022-2844 SN - 1432-1432 VL - 77 IS - 5-6 SP - 199 EP - 205 PB - Springer CY - New York ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Intron structure of the elongation factor 1-alpha gene in the ponto-caspian amphipod pontogammarus maeoticus (Sowinsky, 1894) and its phylogeographic utility JF - Journal of crustacean biology N2 - We tested the utility of a 230 base pair intron fragment of the highly conserved nuclear gene Elongation Factor 1-alpha (EF1-alpha) as a proper marker to reconstruct the phylogeography of the marine amphipod Pontogammarus maeoticus (Sowinsky, 1894) from the Caspian and Black Seas. As a prerequisite for further analysis, we confirmed by Southern blot analysis that EF1-alpha is encoded at a single locus in P. maeoticus. We included 15 populations and 60 individuals in the study. Both the phylogeny of the 27 unique alleles found and population genetic analyses revealed a significant differentiation between populations from the aforementioned sea basins. Our results are in remarkable agreement with recent studies on a variety of species from the same area, which invariably support a major phylogeographic break between the Caspian and Black Seas. We thus conclude that our EF1-alpha intron is an informative marker for phylogeographic studies in amphipods at the shallow population level. KW - Amphipoda KW - Elongation Factor 1-alpha KW - phylogeography KW - Ponto-Caspian region KW - Pontogammarus maeoticus Y1 - 2012 U6 - https://doi.org/10.1163/193724012X626584 SN - 0278-0372 VL - 32 IS - 3 SP - 425 EP - 433 PB - Brill CY - San Antonio ER - TY - JOUR A1 - Schedina, Ina-Maria A1 - Pfautsch, Simone A1 - Hartmann, Stefanie A1 - Dolgener, N. A1 - Polgar, Anika A1 - Bianco, Pier Giorgio A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data JF - Journal of fish biology N2 - Eight polymorphic microsatellite loci were developed for the brook lamprey Lampetra planeri through 454 sequencing and their usefulness was tested in 45 individuals of both L. planeri and the river lamprey Lampetra fluviatilis. The number of alleles per loci ranged between two and five; the Italian and Irish populations had a mean expected heterozygosity of 0.388 and 0.424 and a mean observed heterozygosity of 0.418 and 0.411, respectively. (C) 2014 The Fisheries Society of the British Isles KW - conservation KW - population structure KW - species pair Y1 - 2014 U6 - https://doi.org/10.1111/jfb.12470 SN - 0022-1112 SN - 1095-8649 VL - 85 IS - 3 SP - 960 EP - 964 PB - Wiley-Blackwell CY - Hoboken ER - TY - THES A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Krause, Ulrike A1 - Curio, Eberhard A1 - Tiedemann, Ralph T1 - Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss Y1 - 2012 UR - http://www.biomedcentral.com/content/pdf/1471-2148-12-203.pdf U6 - https://doi.org/10.1186/1471-2148-12-203 ER -