TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Diversification of Ponto-Caspian aquatic fauna - morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae) JF - Molecular phylogenetics and evolution N2 - The geological history of the Ponto-Caspian region, with alternating cycles of isolation and reconnection among the three main basins (Black and Azov Seas, and the more distant Caspian Sea) as well as between them and the Mediterranean Sea, profoundly affected the diversification of its aquatic fauna, leading to a high degree of endemism. Two alternative hypotheses on the origin of this amazing biodiversity have been proposed, corresponding to phases of allopatric separation of aquatic fauna among sea basins: a Late Miocene origin (10-6 MYA) vs. a more recent Pleistocene ancestry (<2 MYA). Both hypotheses support a vicariant origin of (1) Black + Azov Sea lineages on the one hand, and (2) Caspian Sea lineages on the other. Here, we present a study on the Ponto-Caspian endemic amphipod Pontogammarus maeoticus. We assessed patterns of divergence based on (a) two mitochondrial and one nuclear gene, and (b) a morphometric analysis of 23 morphological traits in 16 populations from South and West Caspian Sea, South Azov Sea and North-West Black Sea. Genetic data indicate a long and independent evolutionary history, dating back from the late Miocene to early Pleistocene (6.6-1.6 MYA), for an unexpected, major split between (i) a Black Sea clade and (ii) a well-supported clade grouping individuals from the Caspian and Azov Seas. Absence of shared haplotypes argues against either recent or human-mediated exchanges between Caspian and Azov Seas. A mismatch distribution analysis supports more stable population demography in the Caspian than in the Black Sea populations. Morphological divergence largely followed patterns of genetic divergence: our analyses grouped samples according to the basin of origin and corroborated the close phylogenetic affinity between Caspian and Azov Sea lineages. Altogether, our results highlight the necessity of careful (group-specific) evaluation of evolutionary trajectories in marine taxa that should certainly not be inferred from the current geographical proximity of sea basins alone. (C) 2013 Elsevier Inc. All rights reserved. KW - Biodiversity hotspot KW - Black Sea KW - Caspian Sea KW - Paratethys KW - Sea of Azov KW - Vicariance Y1 - 2013 U6 - https://doi.org/10.1016/j.ympev.2013.05.021 SN - 1055-7903 SN - 1095-9513 VL - 69 IS - 3 SP - 1063 EP - 1076 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Apio, Ann A1 - Kabasa, John David A1 - Ketmaier, Valerio A1 - Schroeder, Christoph A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Female philopatry and male dispersal in a cryptic, bush-dwelling antelope : a combined molecular and behavioural approach N2 - In most mammals, females are philopatric while males disperse in order to avoid inbreeding. We investigated social structure in a solitary ungulate, the bushbuck Tragelaphus sylvaticus in Queen Elizabeth National Park, Uganda by combining behavioural and molecular data. We correlated spatial and social vicinity of individual females with a relatedness score obtained from mitochondrial DNA analysis. Presumed clan members shared the same haplotype, showed more socio-positive interactions and had a common home range. Males had a higher haplotype diversity than females. All this suggests the presence of a matrilineal structure in the study population. Moreover, we tested natal dispersal distances between male and female yearlings and used control region sequences to confirm that females remain in their natal breeding areas whereas males disperse. In microsatellite analysis, males showed a higher genetic variability than females. The impoverished genetic variability of females at both molecular marker sets is consistent with a philopatric and matrilineal structure, while the higher degree of genetic variability of males is congruent with a higher dispersal rate expected in this sex. Evidence even for male long-distance dispersal is brought about by one male carrying a haplotype of a different subspecies, previously not described to occur in this area. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0952-8369 U6 - https://doi.org/10.1111/j.1469-7998.2009.00654.x SN - 0952-8369 ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Tiedemann, Ralph T1 - Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae) T2 - Journal of molecular evolution N2 - Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography. KW - Bucerotidae KW - Concerted evolution KW - Control region KW - Mitochondrial gene order KW - Mitochondrial recombination KW - Philippine archipelago Y1 - 2013 U6 - https://doi.org/10.1007/s00239-013-9591-y SN - 0022-2844 SN - 1432-1432 VL - 77 IS - 5-6 SP - 199 EP - 205 PB - Springer CY - New York ER - TY - THES A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Krause, Ulrike A1 - Curio, Eberhard A1 - Tiedemann, Ralph T1 - Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss Y1 - 2012 UR - http://www.biomedcentral.com/content/pdf/1471-2148-12-203.pdf U6 - https://doi.org/10.1186/1471-2148-12-203 ER - TY - JOUR A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - DeMatthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea Y1 - 2013 UR - 1960 = DOI: 10.1186/1742-9994-10-21 SN - 1742-9994 ER - TY - JOUR A1 - Pavesi, Laura A1 - De Matthaeis, Elvira A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Temporal population genetics and COI phylogeography of the sandhopper macarorchestia remyi (Amphipoda: Talitridae) JF - Zoological studies N2 - Laura Pavesi, Elvira De Matthaeis, Ralph Tiedemann, and Valerio Ketmaier (2011) Temporal population genetics and COI phylogeography of the sandhopper Macarorchestia remyi (Amphipoda: Talitridae). Zoological Studies 50(2): 220-229. In this study we assessed levels of genetic divergence and variability in 208 individuals of the supralittoral sandhopper Macarorchestia remyi, a species strictly associated with rotted wood stranded on sand beaches, by analyzing sequence polymorphisms in a fragment of the mitochondrial DNA (mtDNA) gene coding cytochrome oxidase subunit I (COI). The geographical distribution and ecology of the species are poorly known. The study includes 1 Tyrrhenian and 2 Adriatic populations sampled along the Italian peninsula plus a single individual found on Corfu Is. (Greece). The Tyrrhenian population was sampled monthly for 1 yr. Genetic data revealed a deep phylogeographic break between the Tyrrhenian and Adriatic populations with no shared haplotypes. The single individual collected on Corfu Is. carried the most common haplotype found in the Tyrrhenian population. A mismatch analysis could not reject the hypothesis of a sudden demographic expansion in almost all but 2 monthly samples. When compared to previous genetic data centered on a variety of Mediterranean talitrids, our results place M. remyi among those species with profound intraspecific divergence (sandhoppers) and dissimilar from beachfleas, which generally display little population genetic structuring. KW - Macarorchestia remyi KW - Talitridae KW - Cytochrome oxidase I KW - Population genetics Y1 - 2011 SN - 1021-5506 VL - 50 IS - 2 SP - 220 EP - 229 PB - Institute of Zoology, Academia Sinica CY - Taipei ER - TY - JOUR A1 - Silva-Iturriza, Adriana A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Mitochondrial DNA suggests multiple colonizations of central Philippine islands (Boracay, Negros) by the sedentary Philippine bulbul Hypsipetes philippinus guimarasensis (Aves) N2 - In this study, we have used fragments of three mitochondrial genes (Control Region, CR; transfer RNA for methionine, tRNA-Met; NADH dehydrogenase subunit 2, ND2 for a total of 1066 bp) to reconstruct the phylogeographic history of the endemic Philippine bulbul (Hypsipetes philippinus) at the scale of the central area of the Philippine archipelago. The study includes two of the five recognized subspecies (guimarasensis and mindorensis), 7 populations and 58 individuals. Multiple phylogenetic and network analyses support the existence of two reciprocally monophyletic maternal lineages corresponding to the two named subspecies. Molecular clock estimates indicate that the split between the two subspecies is consistent with the Pleistocene geological history of the archipelago. Patterns of relationships within guimarasensis are biogeographically less clear. Here, a combination of vicariance and dispersal needs to be invoked to reconcile the molecular data with the geographical origin of samples. In particular, the two islands Boracay and Negros host mitochondrial lineages that do not form monophyletic clusters. Our genetic data suggest multiple independent colonization events for these locations. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0947-5745 U6 - https://doi.org/10.1111/j.1439-0469.2010.00566.x SN - 0947-5745 ER - TY - JOUR A1 - Ketmaier, Valerio A1 - Marrone, Federico A1 - Alfonso, Giuseppe A1 - Paulus, Kirsten B. A1 - Wiemann, Annika A1 - Tiedemann, Ralph A1 - Mura, Graziella T1 - Mitochondrial DNA regionalism and historical demography in the extant populations of chirocephalus kerkyrensis (Branchiopoda: Anostraca) JF - PLoS one N2 - Background: Mediterranean temporary water bodies are important reservoirs of biodiversity and host a unique assemblage of diapausing aquatic invertebrates. These environments are currently vanishing because of increasing human pressure. Chirocephalus kerkyrensis is a fairy shrimp typical of temporary water bodies in Mediterranean plain forests and has undergone a substantial decline in number of populations in recent years due to habitat loss. We assessed patterns of genetic connectivity and phylogeographic history in the seven extant populations of the species from Albania, Corfu Is. (Greece), Southern and Central Italy. Methodology/Principal Findings: We analyzed sequence variation at two mitochondrial DNA genes (Cytochrome Oxidase I and 16s rRNA) in all the known populations of C. kerkyrensis. We used multiple phylogenetic, phylogeographic and coalescence-based approaches to assess connectivity and historical demography across the whole distribution range of the species. C. kerkyrensis is genetically subdivided into three main mitochondrial lineages; two of them are geographically localized (Corfu Is. and Central Italy) and one encompasses a wide geographic area (Albania and Southern Italy). Most of the detected genetic variation (approximate to 81%) is apportioned among the aforementioned lineages. Conclusions/Significance: Multiple analyses of mismatch distributions consistently supported both past demographic and spatial expansions with the former predating the latter; demographic expansions were consistently placed during interglacial warm phases of the Pleistocene while spatial expansions were restricted to cold periods. Coalescence methods revealed a scenario of past isolation with low levels of gene flow in line with what is already known for other co-distributed fairy shrimps and suggest drift as the prevailing force in promoting local divergence. We recommend that these evolutionary trajectories should be taken in proper consideration in any effort aimed at protecting Mediterranean temporary water bodies. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0030082 SN - 1932-6203 VL - 7 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Silva-Iturriza, Adriana A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Profound population structure in the Philippine Bulbul Hypsipetes philippinus (Pycnonotidae, Ayes) is not reflected in its Haemoproteus haemosporidian parasite JF - Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID) N2 - In this study we used molecular markers to screen for the occurrence and prevalence of the three most common haemosporidian genera (Haemoproteus, Plasmodium, and Leucocytozoon) in blood samples of the Philippine Bulbul (Hypsipetes philippinus), a thrush-size passerine bird endemic to the Philippine Archipelago. We then used molecular data to ask whether the phylogeographic patterns in this insular host-parasite system might follow similar evolutionary trajectories or not. We took advantage of a previous study describing the pattern of genetic structuring in the Philippine Bulbul across the Central Philippine Archipelago (6 islands, 7 populations and 58 individuals; three mitochondrial DNA genes). The very same birds were here screened for the occurrence of parasites by species-specific PCR assays of the mitochondrial cytochrome b gene (471 base pairs). Twenty-eight out of the 58 analysed birds had Haemoproteus (48%) infections while just 2% of the birds were infected with either Leucocytozoon or Plasmodium. Sixteen of the 28 birds carrying Haemoproteus had multiple infections. The phylogeography of the Philippine Bulbul mostly reflects the geographical origin of samples and it is consistent with the occurrence of two different subspecies on (1) Semirara and (2) Carabao, Boracay, North Gigante, Panay, and Negros, respectively. Haemoproteus phylogeography shows very little geographical structure, suggesting extensive gene flow among locations. While movements of birds among islands seem very sporadic, we found co-occurring evolutionary divergent parasite lineages. We conclude that historical processes have played a major role in shaping the host phylogeography, while they have left no signature in that of the parasites. Here ongoing population processes, possibly multiple reinvasions mediated by other hosts, are predominant. KW - Haemoproteus KW - Hypsipetes philippinus KW - Comparative phylogeography KW - mtDNA Y1 - 2012 U6 - https://doi.org/10.1016/j.meegid.2011.10.024 SN - 1567-1348 VL - 12 IS - 1 SP - 127 EP - 136 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nahavandi, Nahid A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Intron structure of the elongation factor 1-alpha gene in the ponto-caspian amphipod pontogammarus maeoticus (Sowinsky, 1894) and its phylogeographic utility JF - Journal of crustacean biology N2 - We tested the utility of a 230 base pair intron fragment of the highly conserved nuclear gene Elongation Factor 1-alpha (EF1-alpha) as a proper marker to reconstruct the phylogeography of the marine amphipod Pontogammarus maeoticus (Sowinsky, 1894) from the Caspian and Black Seas. As a prerequisite for further analysis, we confirmed by Southern blot analysis that EF1-alpha is encoded at a single locus in P. maeoticus. We included 15 populations and 60 individuals in the study. Both the phylogeny of the 27 unique alleles found and population genetic analyses revealed a significant differentiation between populations from the aforementioned sea basins. Our results are in remarkable agreement with recent studies on a variety of species from the same area, which invariably support a major phylogeographic break between the Caspian and Black Seas. We thus conclude that our EF1-alpha intron is an informative marker for phylogeographic studies in amphipods at the shallow population level. KW - Amphipoda KW - Elongation Factor 1-alpha KW - phylogeography KW - Ponto-Caspian region KW - Pontogammarus maeoticus Y1 - 2012 U6 - https://doi.org/10.1163/193724012X626584 SN - 0278-0372 VL - 32 IS - 3 SP - 425 EP - 433 PB - Brill CY - San Antonio ER -