TY - JOUR A1 - Streubel, Susanna A1 - Fritz, Michael Andre A1 - Teltow, Melanie A1 - Kappel, Christian A1 - Sicard, Adrien T1 - Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae JF - Development : Company of Biologists N2 - Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait. KW - Plant development KW - Gene duplication KW - Leaf shape KW - Morphological evolution KW - Capsella KW - Arabidopsis Y1 - 2018 U6 - https://doi.org/10.1242/dev.164301 SN - 0950-1991 SN - 1477-9129 VL - 145 IS - 8 PB - Company of Biologists CY - Cambridge ER - TY - JOUR A1 - Brzezinka, Krzysztof A1 - Altmann, Simone A1 - Czesnick, Hjördis A1 - Nicolas, Philippe A1 - Gorka, Michal A1 - Benke, Eileen A1 - Kabelitz, Tina A1 - Jähne, Felix A1 - Graf, Alexander A1 - Kappel, Christian A1 - Bäurle, Isabel T1 - Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling JF - eLife N2 - Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/ SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. Y1 - 2016 U6 - https://doi.org/10.7554/eLife.17061 SN - 2050-084X VL - 5 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Kabelitz, Tina A1 - Kappel, Christian A1 - Henneberger, Kirstin A1 - Benke, Eileen A1 - Noeh, Christiane A1 - Bäurle, Isabel T1 - eQTL mapping of transposon silencing reveals a position-dependent stable escape from epigenetic silencing and transposition of AtMu1 in thee arabidopsis lineage JF - The plant cell N2 - Transposons are massively abundant in all eukaryotic genomes and are suppressed by epigenetic silencing. Transposon activity contributes to the evolution of species; however, it is unclear how much transposition-induced variation exists at a smaller scale and how transposons are targeted for silencing. Here, we exploited differential silencing of the AtMu1c transposon in the Arabidopsis thaliana accessions Columbia (Col) and Landsberg erecta (Ler). The difference persisted in hybrids and recombinant inbred lines and was mapped to a single expression quantitative trait locus within a 20-kb interval. In Ler only, this interval contained a previously unidentified copy of AtMu1c, which was inserted at the 39 end of a protein-coding gene and showed features of expressed genes. By contrast, AtMu1c(Col) was intergenic and associated with heterochromatic features. Furthermore, we identified widespread natural AtMu1c transposition from the analysis of over 200 accessions, which was not evident from alignments to the reference genome. AtMu1c expression was highest for insertions within 39 untranslated regions, suggesting that this location provides protection from silencing. Taken together, our results provide a species-wide view of the activity of one transposable element at unprecedented resolution, showing that AtMu1c transposed in the Arabidopsis lineage and that transposons can escape epigenetic silencing by inserting into specific genomic locations, such as the 3' end of genes. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.128512 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 8 SP - 3261 EP - 3271 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Lecourieux, Fatma A1 - Kappel, Christian A1 - Pieri, Philippe A1 - Charon, Justine A1 - Pillet, Jeremy A1 - Hilbert, Ghislaine A1 - Renaud, Christel A1 - Gomes, Eric A1 - Delrot, Serge A1 - Lecourieux, David T1 - Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries JF - Frontiers in plant science N2 - Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation. KW - grapevine KW - berry development KW - microclimate KW - high temperature KW - microarrays KW - metabolomics/metabolite profiling KW - climate change Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00053 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Tedder, Andrew A1 - Carleial, Samuel A1 - Golebiewska, Martyna A1 - Kappel, Christian A1 - Shimizu, Kentaro K. A1 - Stift, Marc T1 - Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae) JF - PLoS one N2 - Introduction The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Methods Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Results and Discussion Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. Conclusion We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0126618 SN - 1932-6203 VL - 10 IS - 6 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lecourieux, Fatma A1 - Kappel, Christian A1 - Lecourieux, David A1 - Serrano, Alejandra A1 - Torres, Elizabeth A1 - Arce-Johnson, Patricio A1 - Delrot, Serge T1 - An update on sugar transport and signalling in grapevine JF - Journal of experimental botany N2 - In addition to their role as a source of reduced carbon, sugars may directly or indirectly control a wide range of activities in plant cells, through transcriptional and post-translational regulation. This control has been studied in detail using Arabidopsis thaliana, where genetic analysis offers many possibilities. Much less is known about perennial woody species. For several years, various aspects of sugar sensing and signalling have been investigated in the grape (Vitis vinifera L.) berry, an organ that accumulates high concentrations of hexoses in the vacuoles of flesh cells. Here we review various aspects of this topic: the molecular basis of sugar transport and its regulation by sugars in grapevine; the functional analysis of several sugar-induced genes; the effects of some biotic and abiotic stresses on the sugar content of the berry; and finally the effects of exogenous sugar supply on the ripening process in field conditions. A picture of complex feedback and multiprocess regulation emerges from these data. KW - Fruit biology KW - grapevine KW - signalling KW - stress KW - sugar KW - transport Y1 - 2014 U6 - https://doi.org/10.1093/jxb/ert394 SN - 0022-0957 SN - 1460-2431 VL - 65 IS - 3 SP - 821 EP - 832 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nicolas, Philippe A1 - Lecourieux, David A1 - Kappel, Christian A1 - Cluzet, Stephanie A1 - Cramer, Grant A1 - Delrot, Serge A1 - Lecourieux, Fatma T1 - The basic leucine zipper transcription factor abscisic acid responseelement-binding factor 2 is an important transcriptional regulator ofabscisic acid-dependent grape berry ripening processes JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. Y1 - 2014 U6 - https://doi.org/10.1104/pp.113.231977 SN - 0032-0889 SN - 1532-2548 VL - 164 IS - 1 SP - 365 EP - 383 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Kabelitz, Tina A1 - Brzezinka, Krzysztof A1 - Friedrich, Thomas A1 - Gorka, Michal A1 - Graf, Alexander A1 - Kappel, Christian A1 - Bäurle, Isabel T1 - A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways, and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as antisilencing factors and prevent silencing of genes next to TEs. Whether TE silencing is counterbalanced by the activity of antisilencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 autoubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3, and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anticorrelated with histone H3 Lys 9 dimethylation (H3K9me2) levels at AtMu1c. Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2 and requires H3K9 methyltransferases for its activity on AtMu1c. Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs. Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 (with the mutated JmjC domain) is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity. Y1 - 2016 U6 - https://doi.org/10.1104/pp.15.01688 SN - 0032-0889 SN - 1532-2548 VL - 171 SP - 344 EP - 358 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Sicard, Adrien A1 - Kappel, Christian A1 - Lee, Young Wha A1 - Wozniak, Natalia Joanna A1 - Marona, Cindy A1 - Stinchcombe, John R. A1 - Wright, Stephen I. A1 - Lenhard, Michael T1 - Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles. KW - morphological evolution KW - growth control KW - standing variation; organ-specific evolution KW - intronic cis-regulatory element Y1 - 2016 U6 - https://doi.org/10.1073/pnas.1613394113 SN - 0027-8424 VL - 113 SP - 13911 EP - 13916 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Huu, Cuong Nguyen A1 - Keller, Barbara A1 - Conti, Elena A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene JF - Proceedings of the National Academy of Sciences of the United States of America (PNAS) N2 - Heterostyly represents a fascinating adaptation to promote outbreeding in plants that evolved multiple times independently. While L-morph individuals form flowers with long styles, short anthers, and small pollen grains, S-morph individuals have flowers with short styles, long anthers, and large pollen grains. The difference between the morphs is controlled by an S-locus "supergene" consisting of several distinct genes that determine different traits of the syndrome and are held together, because recombination between them is suppressed. In Primula, the S locus is a roughly 300-kb hemizygous region containing five predicted genes. However, with one exception, their roles remain unclear, as does the evolutionary buildup of the S locus. Here we demonstrate that the MADS-box GLOBOSA2 (GLO2) gene at the S locus determines anther position. In Primula forbesii S-morph plants, GLO2 promotes growth by cell expansion in the fused tube of petals and stamen filaments beneath the anther insertion point; by contrast, neither pollen size nor male incompatibility is affected by GLO2 activity. The paralogue GLO1, from which GLO2 arose by duplication, has maintained the ancestral B-class function in specifying petal and stamen identity, indicating that GLO2 underwent neofunctionalization, likely at the level of the encoded protein. Genetic mapping and phylogenetic analysis indicate that the duplications giving rise to the style-length-determining gene CYP734A50 and to GLO2 occurred sequentially, with the CYP734A50 duplication likely the first. Together these results provide the most detailed insight into the assembly of a plant supergene yet and have important implications for the evolution of heterostyly. KW - heterostyly KW - Primula KW - supergene KW - gene duplication KW - neofunctionalization Y1 - 2020 U6 - https://doi.org/10.1073/pnas.2006296117 SN - 0027-8424 VL - 117 IS - 37 SP - 23148 EP - 23157 PB - National Academy of Sciences CY - Washington ER -