TY - JOUR A1 - Rohrmann, Alexander A1 - Heermance, Richard A1 - Kapp, Paul A1 - Cai, Fulong T1 - Wind as the primary driver of erosion in the Qaidam Basin, China JF - Earth & planetary science letters N2 - Deserts are a major source of loess and may undergo substantial wind-erosion as evidenced by yardang fields, deflation pans, and wind-scoured bedrock landscapes. However, there are few quantitative estimates of bedrock removal by wind abrasion and deflation. Here, we report wind-erosion rates in the western Qaidam Basin in central China based on measurements of cosmogenic Be-10 in exhumed Miocene sedimentary bedrock. Sedimentary bedrock erosion rates range from 0.05 to 0.4 mm/yr, although the majority of measurements cluster at 0.125 +/- 0.05 mm/yr. These results, combined with previous work, indicate that strong winds, hyper-aridity, exposure of friable Neogene strata, and ongoing rock deformation and uplift in the western Qaidam Basin have created an environment where wind, instead of water, is the dominant agent of erosion and sediment transport. Its geographic location (upwind) combined with volumetric estimates suggest that the Qaidam Basin is a major source (up to 50%) of dust to the Chinese Loess Plateau to the east. The cosmogenically derived wind erosion rates are within the range of erosion rates determined from glacial and fluvial dominated landscapes worldwide, exemplifying the effectiveness of wind to erode and transport significant quantities of bedrock. KW - wind KW - cosmogenic nuclide-dating KW - earth surface processes KW - Chinese Loess Plateau KW - climate KW - Asia Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2013.03.011 SN - 0012-821X VL - 374 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER -