TY - JOUR A1 - Smela, E. A1 - Kaminorz, Yvette A1 - Inganäs, O. A1 - Brehmer, Ludwig T1 - Planar microfabricated polymer light-emitting diodes N2 - Conjugated polymers are organic semiconducting materials that can emit light. These polymers have the advantages of being light, cheap, and easy to process, and in addition the band gap can be tailored. We report the microfabrication of surface light emitting diodes (SLEDs) on silicon substrates in which the electrodes are underneath the organic electroluminescent layer. Patterned electrodes are separated by a 2500Å-thick insulating layer of silicon oxide or are interdigitated with a separation of 10 or 20 µm; the luminescent polymer is spin-coated or solvent cast on top of the electrodes. This fabrication method is completely compatible with conventional silicon processing because the polymer is deposited last and the light is emitted from the upper surface of the diodes. Despite the large spacing between electrodes, and despite the absence of an evaporated top contact, the voltages required for light emission were not much greater than those used in conventional sandwich-type structures Y1 - 1998 ER - TY - JOUR A1 - Schulz, Burkhard A1 - Kaminorz, Yvette A1 - Brehmer, Ludwig T1 - New aromatic poly(1,3,4-oxadiazole)s for light emitting diodes N2 - New aromatic poly(1,3,4-oxadiazole)s were synthesized having excellent film forming properties due to their solubility in common organic solvents. The investigated new polyoxadiazoles can be used as emission material in single layer LED. The poly- oxadiazoles show an emission in the range of blue to yellow light. The external quantum efficiency as well as the turn-on voltage of the devices are influenced when blends of the polyoxadiazole with hole transport materials are used. Y1 - 1997 ER - TY - JOUR A1 - Kaminorz, Yvette A1 - Smela, Elisabeth A1 - Johansson, Tomas A1 - Brehmer, Ludwig A1 - Andersson, Mats R. A1 - Inganäs, Olle T1 - Characteristics of polythiophene surface light emitting diodes N2 - Surface light emitting diodes SLEDs , in which previously microfabricated electrodes were coated with a conjugated polymer, were made with greatly different electrode spacings 250 nm and 10 or 20 mm and with different electrode material combinations. The fabrication process allowed us to compare several electrode materials. The SLED structures also enabled imaging of the light emission zone with fluorescence video microscopy. Conventional sandwich structures were also made for comparison electrode separation 50 nm. In this study, the emitting layer was poly[3- (2',5'-bis(1'',4'',7''trioxaoctyl)phenyl)-2,2'-bithiophene] (EO-PT), a conjugated polymer based on polythiophene with oligo ethyleneoxide side chains. The current-voltage (I(V)) and light-voltage (L(V)) characteristics of the SLEDs were largely insensitive to electrode separation except at high voltages, at which the current in the devices with the largest separations was limited. Sandwich structures had the same light output at a given current. Light could be obtained in forward and reverse bias from indium tin oxide ITO -aluminum, gold silicide-aluminum, and gold silicide-gold SLEDs, but the turn-on voltages were lowest with the ITO-aluminum devices, and these were also the brightest and most reliable. Adding salt to the EO-PT increased the current and brightness, decreased the turn-on voltages, and made the I(V) characteristics symmetric; thus, a device with an electrode separation of 10 mm had the extraordinarily low turn-on voltage of 6 V. The location of the light emission was at the electron-injecting contact. Y1 - 2000 ER - TY - JOUR A1 - Kaminorz, Yvette A1 - Smela, E. A1 - Inganäs, O. A1 - Brehmer, Ludwig T1 - Sensitivity of polythiophene planar light emitting diodes to oxygen N2 - Surface light emitting diodes (SLEDs) with a polymer-on-top geometry were used to study the sensitivity of light emission to oxygen. In these devices, pre-fabricated electrodes were coated with a conjugated polymer, which was thus directly exposed to the environment. Oxygen caused an immediate ten-to hundred fold decrease in electroluminescence efficiency relative to that in nitrogen or argon. Above the voltage for light emission, there was a sharp increase in current. Removing the oxygen led to recovery of the light intensity over a period of minutes, but the current returned immediately to its lower, original level. The electroluminescence and photoluminescence spectra were identical and were unaltered in shape by oxygen exposure (only decreasing in size). However, photoluminescence was unaffected by oxygen alone. This result indicates that oxygen does not affect excitons directly, but rather influences an intermediate species on the path to exciton formation, one that is significant only in electroluminescence and not in photoluminescence. Under simultaneous exposure to oxygen and UV light, the photoluminescence irreversibly decreased, presumably due to photo-oxidation Y1 - 1998 ER - TY - JOUR A1 - Kaminorz, Yvette A1 - Schulz, Burkhard A1 - Brehmer, Ludwig T1 - Optical and Electrical Properties of Substituted 2,5-Diphenyl-1,3,4-Oxadiazoles N2 - New substituted 2,5-diphenyl-1,3,4-oxadiazoles are reported as luminescent materials in light emitting diodes LEDs . The investigated new oxadiazoles show efficient blue and green emission in single layer devices. The combination with a hole transporting and red emitting polythiophene led to a white emission with higher quantum efficiency (QE). Y1 - 2000 ER - TY - THES A1 - Kaminorz, Yvette T1 - Charakterisierung und Optimierung von Leuchtdioden auf der Basis niedermolekularer und polymerer Heterozyklen Y1 - 1998 CY - Potsdam ER - TY - JOUR A1 - Höpfner, Ulf A1 - Frübing, Peter A1 - Neumann, Werner A1 - Kaminorz, Yvette A1 - Brehmer, Ludwig T1 - Polarization Processes of poly(DMDAAC) films studied by TSD current Y1 - 1996 ER - TY - JOUR A1 - Hamaciuc, E. A1 - Bruma, Maria A1 - Köpnick, Thomas A1 - Kaminorz, Yvette A1 - Schulz, Burkhard T1 - Synthesis and Study of New Silicon-containing Polyoxadiazoles N2 - A series of new poly-1,3,4-oxadiazoles has been synthesized by polycondensation reaction of hydrazine sulfate with a mixture of a dicarboxylic acid containing unsaturated bonds and a dicarboxylic acid containing silicon, by using methanesulfonic acid/phosphorus pentoxide as a reaction medium. These polymers were highly thermostable but they were only soluble in strong inorganic acids such as sulfuric or methanesulfonic ones. An alternative way was followed by using the corresponding dihydrazides containing unsaturated bonds and the corresponding diacid chloride containing silicon that reacted in N-methylpyrrolidinone (NMP) to give soluble silicon-containing unsaturated polyhydrazides, which were cyclodehydrated either by thermal or chemical treatment to give the corresponding polyoxadiazoles. Very thin coatings of polyhydrazides and polyoxadiazoles were deposited onto silicon wafers and they showed a very smooth surface, free of pinholes, when studied by atomic force microscopy (AFM). Some polyoxadiazole films showed strong blue photoluminescence. Y1 - 2001 ER - TY - JOUR A1 - Brehmer, Ludwig A1 - Kaminorz, Yvette A1 - Grasnick, G. A1 - Herkner, G. T1 - Organic thin film pyrosensors Y1 - 1996 ER - TY - JOUR A1 - Brehmer, Ludwig A1 - Grasnick, G. A1 - Herkner, G. A1 - Kaminorz, Yvette T1 - Organic thin film pyrosensors Y1 - 1995 ER -