TY - JOUR A1 - Socher, Stephanie A. A1 - Prati, Daniel A1 - Boch, Steffen A1 - Müller, Jörg A1 - Baumbach, Henryk A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Schöning, Ingo A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The relationship of different types of grassland use with plant species richness and composition ( functional groups of herbs, legumes, and grasses) has so far been studied at small regional scales or comprising only few components of land use. We comprehensively studied the relationship between abandonment, fertilization, mowing intensity, and grazing by different livestock types on plant diversity and composition of 1514 grassland sites in three regions in North-East, Central and South-West Germany. We further considered environmental site conditions including soil type and topographical situation. Fertilized grasslands showed clearly reduced plant species diversity (-15% plant species richness, -0.1 Shannon diversity on fertilized grasslands plots of 16m(2)) and changed composition (-3% proportion of herb species), grazing had the second largest effects and mowing the smallest ones. Among the grazed sites, the ones grazed by sheep had higher than average species richness (+27%), and the cattle grazed ones lower (-42%). Further, these general results were strongly modulated by interactions between the different components of land use and by regional context: land-use effects differed largely in size and sometimes even in direction between regions. This highlights the importance of comparing different regions and to involve a large number of plots KW - Biodiversity exploratories KW - Functional groups KW - Land use type KW - Livestock type KW - Shannon diversity Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2012.12.003 SN - 1439-1791 VL - 14 IS - 2 SP - 126 EP - 136 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Fischer, Markus A1 - Bossdorf, Oliver A1 - Gockel, Sonja A1 - Haensel, Falk A1 - Hemp, Andreas A1 - Hessenmoeller, Dominik A1 - Korte, Gunnar A1 - Nieschulze, Jens A1 - Pfeiffer, Simone A1 - Prati, Daniel A1 - Renner, Swen A1 - Schoening, Ingo A1 - Schumacher, Uta A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - Implementing large-scale and long-term functional biodiversity research : the biodiversity exploratories N2 - Functional biodiversity research explores drivers and functional consequences of biodiversity changes Land use change is a major driver of changes of biodiversity and of biogeochemical and biological ecosystem processes and services However, land use effects on genetic and species diversity are well documented only for a few taxa and trophic networks We hardly know how different components of biodiversity and their responses to land use change are interrelated and very little about the simultaneous, and interacting, effects of land use on multiple ecosystem processes and services Moreover, we do not know to what extent land use effects on ecosystem processes and services are mediated by biodiversity change Thus, overall goals are on the one hand to understand the effects of land use on biodiversity and on the other to understand the modifying role of biodiversity change for land-use effects on ecosystem processes, including biogeochemical cycles To comprehensively address these Important questions, we recently established a new large-scale and long-term project for functional biodiversity, the Biodiversity Exploratories (www biodiversity-exploratories de) They comprise a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests They serve as a joint research platform for currently 40 projects involving over 300 people studying various aspects of the relationships between land use biodiversity and ecosystem processes through monitoring, comparative observation and experiments We introduce guiding questions, concept and design of the Biodiversity Exploratories - including main aspects of selection and implementation of field plots and project structure - and we discuss the significance of this approach for further functional biodiversity research This includes the crucial relevance of a common study design encompassing variation in both drivers and outcomes of biodiversity change and ecosystem processes, the interdisciplinary integration of biodiversity and ecosystem researchers, the training of a new generation of integrative biodiversity researchers, and the stimulation of functional biodiversity research in real landscape contexts, in Germany and elsewhere. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/14391791 U6 - https://doi.org/10.1016/j.baae.2010.07.009 SN - 1439-1791 ER - TY - JOUR A1 - Boch, Steffen A1 - Prati, Daniel A1 - Müller, Jörg A1 - Socher, Stephanie A1 - Baumbach, Henryk A1 - Buscot, Francois A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Hessenmöller, Dominik A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, K. Eduard A1 - Pfeiffer, Simone A1 - Pommer, Ulf A1 - Schöning, Ingo A1 - Schulze, Ernst-Detlef A1 - Seilwinder, Claudia A1 - Weisser, Wolfgang W. A1 - Wells, Konstans A1 - Fischer, Markus T1 - High plant species richness indicates management-related disturbances rather than the conservation status of forests JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances. KW - Biodiversity Exploratories KW - Coniferous plantations KW - Disturbance KW - Ellenberg indicator values KW - Forest management KW - Selection vs. age-class forests KW - Silviculture KW - Standing biomass KW - Typical forest species KW - Unmanaged vs. managed forests Y1 - 2013 U6 - https://doi.org/10.1016/j.baae.2013.06.001 SN - 1439-1791 VL - 14 IS - 6 SP - 496 EP - 505 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Manning, Pete A1 - Gossner, Martin M. A1 - Bossdorf, Oliver A1 - Allan, Eric A1 - Zhang, Yuan-Ye A1 - Prati, Daniel A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra Maria A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Müller, Jörg A1 - Pasalic, Esther A1 - Socher, Stephanie A. A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Weiner, Christiane A1 - Werner, Michael A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Wells, Konstans A1 - Buscot, Francois A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa JF - Ecology : a publication of the Ecological Society of America N2 - Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35% decrease in rand 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. KW - Biodiversity indicators KW - correlation KW - fertilization KW - grassland management KW - grazing KW - land-use change KW - land-use intensity KW - mowing KW - multidiversity KW - multitrophic interactions Y1 - 2015 U6 - https://doi.org/10.1890/14-1307.1 SN - 0012-9658 SN - 1939-9170 VL - 96 IS - 6 SP - 1492 EP - 1501 PB - Wiley CY - Washington ER - TY - JOUR A1 - Blüthgen, Nico A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Hoelzel, Norbert A1 - Alt, Fabian A1 - Boch, Steffen A1 - Gockel, Sonja A1 - Hemp, Andreas A1 - Müller, Jörg A1 - Nieschulze, Jens A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Schumacher, Uta A1 - Socher, Stephanie A. A1 - Wells, Konstans A1 - Birkhofer, Klaus A1 - Buscot, Francois A1 - Oelmann, Yvonne A1 - Rothenwöhrer, Christoph A1 - Scherber, Christoph A1 - Tscharntke, Teja A1 - Weiner, Christiane N. A1 - Fischer, Markus A1 - Kalko, Elisabeth K. V. A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. T1 - A quantitative index of land-use intensity in grasslands integrating mowing, grazing and fertilization JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Land use is increasingly recognized as a major driver of biodiversity and ecosystem functioning in many current research projects. In grasslands, land use is often classified by categorical descriptors such as pastures versus meadows or fertilized versus unfertilized sites. However, to account for the quantitative variation of multiple land-use types in heterogeneous landscapes, a quantitative, continuous index of land-use intensity (LUI) is desirable. Here we define such a compound, additive LUI index for managed grasslands including meadows and pastures. The LUI index summarizes the standardized intensity of three components of land use, namely fertilization, mowing, and livestock grazing at each site. We examined the performance of the LUI index to predict selected response variables on up to 150 grassland sites in the Biodiversity Exploratories in three regions in Germany(Alb, Hainich, Schorlheide). We tested the average Ellenberg nitrogen indicator values of the plant community, nitrogen and phosphorus concentration in the aboveground plant biomass, plant-available phosphorus concentration in the top soil, and soil C/N ratio, and the first principle component of these five response variables. The LUI index significantly predicted the principal component of all five response variables, as well as some of the individual responses. Moreover, vascular plant diversity decreased significantly with LUI in two regions (Alb and Hainich). Inter-annual changes in management practice were pronounced from 2006 to 2008, particularly due to variation in grazing intensity. This rendered the selection of the appropriate reference year(s) an important decision for analyses of land-use effects, whereas details in the standardization of the index were of minor importance. We also tested several alternative calculations of a LUI index, but all are strongly linearly correlated to the proposed index. The proposed LUI index reduces the complexity of agricultural practices to a single dimension and may serve as a baseline to test how different groups of organisms and processes respond to land use. In combination with more detailed analyses, this index may help to unravel whether and how land-use intensities, associated disturbance levels or other local or regional influences drive ecological processes. KW - Agro-ecosystems KW - Biodiversity exploratories KW - Grassland management KW - Land-use impacts KW - Livestock density KW - Meadows KW - Nitrogen KW - Pastures Y1 - 2012 U6 - https://doi.org/10.1016/j.baae.2012.04.001 SN - 1439-1791 VL - 13 IS - 3 SP - 207 EP - 220 PB - Elsevier CY - Jena ER -