TY - JOUR A1 - Schöller, Markus A1 - Hubrig, Swetlana A1 - Fossati, L. A1 - Carroll, Thorsten Anthony A1 - Briquet, Maryline A1 - Oskinova, Lida M. A1 - Järvinen, S. A1 - Ilyin, Ilya A1 - Castro, N. A1 - Morel, T. A1 - Langer, N. A1 - Przybilla, N. A1 - Nieva, M. -F. A1 - Kholtygin, A. F. A1 - Sana, H. A1 - Herrero, A. A1 - Barba, R. H. A1 - de Koter, A. T1 - B fields in OB stars (BOB) BT - Concluding the FORS2 observing campaign JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. The B fields in OB stars (BOB) Collaboration is based on an ESO Large Programme to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. Methods. In the framework of this program, we carried out low-resolution spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8m telescope. Results. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3 sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD -57 degrees 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD -62 degrees 2124. We obtain a magnetic field detection rate of 6 +/- 3% for the full sample of 69 OB stars observed with FORS 2 within the BOB program. For the preselected objects with a nu sin i below 60 km s(-1), we obtain a magnetic field detection rate of 5 +/- 5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections. KW - polarization KW - stars: early-type KW - stars: magnetic field KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201628905 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Morel, T. A1 - Castro, Norberto A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Langer, N. A1 - Przybilla, Norbert A1 - Schöller, Markus A1 - Carroll, Thorsten Anthony A1 - Ilyin, Ilya A1 - Irrgang, Andreas A1 - Oskinova, Lida M. A1 - Schneider, Fabian R. N. A1 - Simon Díaz, Sergio A1 - Briquet, Maryline A1 - González, Jean-Francois A1 - Kharchenko, Nina A1 - Nieva, M.-F. A1 - Scholz, Ralf-Dieter A1 - de Koter, Alexander A1 - Hamann, Wolf-Rainer A1 - Herrero, Artemio A1 - Maíz Apellániz, Jesus A1 - Sana, Hugues A1 - Arlt, Rainer A1 - Barbá, Rodolfo H. A1 - Dufton, Polly A1 - Kholtygin, Alexander A1 - Mathys, Gautier A1 - Piskunov, Anatoly E. A1 - Reisenegger, Andreas A1 - Spruit, H. A1 - Yoon, S.-C. T1 - The B fields in OB stars (BOB) survey T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 821 KW - magnetic fields KW - stars: early-type KW - stars: magnetic fields KW - stars: individual (HD 164492C, CPD –57 ◦ 3509, HD 54879, β CMa, ε CMa) Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415238 SN - 1866-8372 IS - 821 ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Kharchenko, N. V. A1 - Oskinova, Lida M. A1 - Langer, N. A1 - Gonzalez, J. F. A1 - Kholtygin, A. F. A1 - Briquet, Maryline T1 - Exploring the origin of magnetic fields in massive stars - II. New magnetic field measurements in cluster and field stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. Additional observations are of utmost importance to constrain the conditions that are conducive to magnetic fields and to determine first trends about their occurrence rate and field strength distribution. Aims. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Methods. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FOcal Reducer low dispersion Spectrograph (FORS 2) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic Optical Telescope (NOT) and HARPS mounted at the ESO 3.6 m between 2008 and 2011. To assess the membership in open clusters and associations, we used astrometric catalogues with the highest quality kinematic and photometric data currently available. Results. The presence of a magnetic field is confirmed in nine stars previously observed with FORS 1/2: HD36879, HD47839, CPD-28 2561, CPD-47 2963, HD93843, HD148937, HD149757, HD328856, and HD164794. New magnetic field detections at a significance level of at least 3 sigma were achieved in five stars: HD92206c, HD93521, HD93632, CPD-46 8221, and HD157857. Among the stars with a detected magnetic field, five stars belong to open clusters with high membership probability. According to previous kinematic studies, five magnetic O-type stars in our sample are candidate runaway stars. KW - polarization KW - stars: early-type KW - stars: kinematics and dynamics KW - stars: magnetic field KW - stars: massive KW - open clusters and associations: general Y1 - 2013 U6 - https://doi.org/10.1051/0004-6361/201220721 SN - 0004-6361 VL - 551 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schoeller, M. A1 - Hubrig, Swetlana A1 - Ilyin, Ilya A1 - Kharchenko, N. V. A1 - Briquet, Maryline A1 - Gonzalez, J. F. A1 - Langer, Norbert A1 - Oskinova, Lida M. T1 - Magnetic field studies of massive main sequence stars JF - Astronomische Nachrichten = Astronomical notes N2 - We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar physical parameters and evolution. KW - stars: early-type KW - stars: magnetic fields KW - stars: kinematics KW - techniques: polarimetric Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111606 SN - 0004-6337 VL - 332 IS - 9-10 SP - 994 EP - 997 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Castro, Norberto A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Simon Díaz, Sergio A1 - Schoeller, Markus A1 - Ilyin, Ilya A1 - Carrol, Thorsten A. A1 - Langer, Norbert A1 - Morel, Thierry A1 - Schneider, Fabian R. N. A1 - Przybilla, Norbert A1 - Herrero, Artemio A1 - de Koter, Alex A1 - Oskinova, Lida M. A1 - Reisenegger, Andreas A1 - Sana, Hugues T1 - B fields in OB stars (BOB) Detection of a strong magnetic field in the O9.7 V star HD 54879 JF - Astronomy and astrophysics : an international weekly journal N2 - The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code FASTWIND results in an effective temperature and a surface gravity of 33 000 +/- 1000K and 4.0 +/- 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although H alpha shows a variable emission. The H alpha emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD54879 the most strongly magnetic, non-variable single O-star detected to date. KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: massive KW - stars: individual: HD 54879 Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201425354 SN - 1432-0746 VL - 581 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Fossati, Luca A1 - Carroll, Thorsten Anthony A1 - Castro, Norberto A1 - Gonzalez, J. F. A1 - Ilyin, Ilya A1 - Przybilla, Norbert A1 - Schoeller, M. A1 - Oskinova, Lida M. A1 - Morel, T. A1 - Langer, N. A1 - Scholz, Ralf-Dieter A1 - Kharchenko, N. V. A1 - Nieva, M. -F. T1 - B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods. In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results. Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. KW - binaries: close KW - stars: early-type KW - stars: fundamental parameters KW - stars: magnetic field KW - stars: variables: general KW - stars: individual: HD 164492C Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423490 SN - 0004-6361 SN - 1432-0746 VL - 564 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Przybilla, Norbert A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Nieva, M. -F. A1 - Jaervinen, S. P. A1 - Castro, Norberto A1 - Schoeller, M. A1 - Ilyin, Ilya A1 - Butler, Keith A1 - Schneider, F. R. N. A1 - Oskinova, Lida M. A1 - Morel, T. A1 - Langer, N. A1 - de Koter, A. T1 - B fields in OB stars (BOB): Detection of a magnetic field in the He-strong star CPD-57 degrees 3509 JF - Organic letters N2 - Methods. Spectropolarimetric observations with FORS2 and HARPSpol are analysed using two independent approaches to quantify the magnetic field strength. A high-S/N FLAMES/GIRAFFE spectrum is analysed using a hybrid non-LTE model atmosphere technique. Comparison with stellar evolution models constrains the fundamental parameters of the star. Results. We obtain a firm detection of a surface averaged longitudinal magnetic field with a maximum amplitude of about 1 kG. Assuming a dipolar configuration of the magnetic field, this implies a dipolar field strength larger than 3.3 kG. Moreover, the large amplitude and fast variation (within about 1 day) of the longitudinal magnetic field implies that CPD-57 degrees 3509 is spinning very fast despite its apparently slow projected rotational velocity. The star should be able to support a centrifugal magnetosphere, yet the spectrum shows no sign of magnetically confined material; in particular, emission in H alpha is not observed. Apparently, the wind is either not strong enough for enough material to accumulate in the magnetosphere to become observable or, alternatively, some leakage process leads to loss of material from the magnetosphere. The quantitative spectroscopic analysis of the star yields an effective temperature and a logarithmic surface gravity of 23 750 +/- 250 K and 4.05 +/- 0.10, respectively, and a surface helium fraction of 0.28 +/- 0.02 by number. The surface abundances of C, N, O, Ne, S, and Ar are compatible with the cosmic abundance standard, whereas Mg, Al, Si, and Fe are depleted by about a factor of 2. This abundance pattern can be understood as the consequence of a fractionated stellar wind. CPD-57 degrees 3509 is one of the most evolved He-strong stars known with an independent age constraint due to its cluster membership. KW - stars: abundances KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: CPD-57 degrees 3509 KW - stars: massive Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527646 SN - 1432-0746 VL - 587 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Scholz, Kathleen A1 - Hamann, Wolf-Rainer A1 - Schoeller, M. A1 - Ignace, R. A1 - Ilyin, Ilya A1 - Gayley, K. G. A1 - Oskinova, Lida M. T1 - Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry JF - Monthly notices of the Royal Astronomical Society N2 - To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights. KW - techniques: polarimetric KW - stars: individual: WR 6 KW - stars: magnetic field KW - stars: variables: general KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw558 SN - 0035-8711 SN - 1365-2966 VL - 458 SP - 3381 EP - 3393 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Kholtygin, A. A1 - Ilyin, Ilya A1 - Schöller, M. A1 - Oskinova, Lida M. T1 - THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT zeta PUPPIS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in zeta Pup, as no magnetic field measurement has a significance level higher than 2.4 sigma. Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements. KW - stars: atmospheres KW - stars: early-type KW - stars: individual (zetaPup) KW - stars: magnetic field KW - stars: variables: general Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/822/2/104 SN - 0004-637X SN - 1538-4357 VL - 822 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Fossati, Luca A1 - Castro, Norberto A1 - Morel, Thierry A1 - Langer, Norbert A1 - Briquet, Maryline A1 - Carroll, Thorsten Anthony A1 - Hubrig, Swetlana A1 - Nieva, Maria-Fernanda A1 - Oskinova, Lida M. A1 - Przybilla, Norbert A1 - Schneider, Fabian R. N. A1 - Schoeller, Magnus A1 - Simon Díaz, Sergio A1 - Ilyin, Ilya A1 - de Koter, Alex A1 - Reisenegger, Andreas A1 - Sana, Hugues T1 - B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa Possible lack of a "magnetic desert" in massive stars JF - Astronomy and astrophysics : an international weekly journal N2 - Only a small fraction of massive stars seem to host a measurable structured magnetic field, whose origin is still unknown and whose implications for stellar evolution still need to be assessed. Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD 44743; B1 II/III) and epsilon CMa (HD 52089; B1.5II) in December 2013 and April 2014. For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field, approximately constant with time. We determined the physical parameters of both stars and characterise their X-ray spectrum. For the beta Cep star beta CMa, our mode identification analysis led to determining a rotation period of 13.6 +/- 1.2 days and of an inclination angle of the rotation axis of 57.6 +/- 1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of about 22 degrees and a dipolar magnetic field strength (B-d) of about 100 G (60 < B-d < 230 G within the 1 sigma level), below what is typically found for other magnetic massive stars. This conclusion is strengthened further by considerations of the star's X-ray spectrum. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Our results imply that both stars are expected to have a dynamical magnetosphere, so the magnetic field is not able to support a circumstellar disk. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence. KW - stars: atmospheres KW - stars: evolution KW - stars: magnetic field KW - stars: individual: epsilon CMa KW - stars: individual: beta CMa KW - stars: massive Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201424986 SN - 0004-6361 SN - 1432-0746 VL - 574 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Jaervinen, S. P. A1 - Hubrig, Swetlana A1 - Ilyin, Ilya A1 - Shenar, Tomer A1 - Schoeller, M. T1 - A search for spectral variability in the highly magnetized O9.7 V star HD 54879 JF - Astronomische Nachrichten = Astronomical notes N2 - The O9.7 V star HD 54879 possesses the second strongest magnetic field among the single, magnetic, O-type stars. In contrast to other magnetic O-type stars, the chemical abundance analysis of HD 54879 indicated a rather normal optical spectrum without obvious element enhancements or depletions. Furthermore, spectral variability was detected only in lines partly formed in the magnetosphere. As this star shows such a deviate, almost nonvariable, spectral behavior, we performed a deeper analysis of its spectral variability on different timescales using all currently available HARPSpol and FORS 2 spectropolarimetric observations. The longitudinal magnetic field strengths measured at different epochs indicate the presence of variability possibly related to stellar rotation, but the current data do not allow us yet to identify the periodicity of the field variation. As spectropolarimetric observations obtained at different epochs consist of subexposures with different integration times, we investigated spectral variability on timescales of minutes. The detected level of variability in line profiles of different elements is rather low, between 0.2 and 1.7%, depending on the integration time of the exposures and the considered element. KW - stars: magnetic fields KW - stars: oscillations KW - techniques: polarimetric KW - stars: individual (HD 54879) Y1 - 2017 U6 - https://doi.org/10.1002/asna.201713402 SN - 0004-6337 SN - 1521-3994 VL - 338 SP - 952 EP - 958 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Keles, Engin A1 - Mallom, Matthias A1 - von Essen, Carolina A1 - Caroll, Thorsten A. A1 - Alexoudi, Xanthippi A1 - Pino, Lorenzo A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Kitzmann, Daniel A1 - Nascimbeni, Valerino A1 - Turner, Jake D. A1 - Strassmeier, Klaus G. T1 - The potassium absorption on HD189733b and HD209458b JF - Monthly Notices of the Royal Astronomical Society: Letters N2 - In this work, we investigate the potassium excess absorption around 7699 Å of the exoplanets HD189733b and HD209458b. For this purpose, we used high-spectral resolution transit observations acquired with the 2 × 8.4 m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8 Å, we present a detection >7σ with an absorption level of 0.18 per cent for HD189733b. Applying the same analysis to HD209458b, we can set 3σ upper limit of 0.09 per cent, even though we do not detect a K-excess absorption. The investigation suggests that the K feature is less present in the atmosphere of HD209458b than in the one of HD189733b. This comparison confirms previous claims that the atmospheres of these two planets must have fundamentally different properties. Y1 - 2021 U6 - https://doi.org/10.1093/mnrasl/slz123 VL - 489 IS - 1 SP - L37 EP - L41 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Keles, Engin A1 - Kitzmann, Daniel A1 - Mallonn, Matthias A1 - Alexoudi, Xanthippi A1 - Fossati, Luca A1 - Pino, Lorenzo A1 - Seidel, Julia Victoria A1 - Caroll, Thorsten A. A1 - Steffen, M. A1 - Ilyin, Ilya A1 - Poppenhäger, Katja A1 - Strassmeier, Klaus G. A1 - von Essen, Carolina A1 - Nascimbeni, Valerio A1 - Turner, Jake D. T1 - Probing the atmosphere of HD189733b with the Na i and K i lines JF - Monthly Notices of the Royal Astronomical Society N2 - High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high-altitude absorption, e.g. from resonant sodium (Na i) and potassium (K i) lines. We resolve the atmospheric K i absorption on HD189733b with the aim to compare the resolved K i line and previously obtained high-resolution Na i-D line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of ∼10 km/s for the Na i-D lines and only a few km/s for the K i line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K i or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines. Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa2435 VL - 498 IS - 1 SP - 1033 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shenar, Tomer A1 - Oskinova, Lida M. A1 - Jaervinen, S. P. A1 - Luckas, P. A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Hubrig, Swetlana A1 - Sander, Andreas Alexander Christoph A1 - Ilyin, Ilya A1 - Hamann, Wolf-Rainer T1 - Constraining the weak-wind problem BT - an XMM-HST campaign for the magnetic 09.7 V star HD 54879 JF - Contributions Of The Astronomical Observatory Skalnate Pleso N2 - Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates M of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (09.7 V), one of a few O-type stars with a detected atmospheric magnetic field (B-d greater than or similar to 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log M-B=0 approximate to -9.0 M-circle dot yr(-1). Since the wind is partially trapped within the Alfven radius rA greater than or similar to 12 R-*,, the true mass-loss rate of HD 54879 is log M less than or similar to -10.2 M-circle dot yr(-1). Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s(-1)). An initial mass of 16 M-circle dot and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log T-x = 6.7 K and an X-ray luminosity of log L-x = 32 erg s(-1). The latter implies a significant X-ray excess (log L-x/L-Bol approximate to - 6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P approximate to 5 yr is derived from variability of the Ha line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars. KW - stars: massive KW - stars: magnetic field KW - stars: mass-loss Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731291 SN - 1335-1842 SN - 1336-0337 VL - 48 IS - 1 SP - 139 EP - 143 PB - Astronomický Ústav SAV CY - Tatranská Lomnica ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schöller, Markus A1 - Kholtygin, Alexander F. A1 - Tsumura, Hiroki A1 - Hoshino, Akio A1 - Kitamoto, Shunji A1 - Oskinova, Lida M. A1 - Ignace, Richard A1 - Todt, Helge Tobias A1 - Ilyin, Ilya T1 - New multiwavelength observations of the Of?p star CPD-28 degrees 2561 JF - Monthly notices of the Royal Astronomical Society N2 - A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind. KW - stars: atmospheres KW - stars: individual: CPD-28 degrees 2561 KW - stars: magnetic field KW - stars: mass-loss KW - stars: variables: general KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1093/mnras/stu2516 SN - 0035-8711 SN - 1365-2966 VL - 447 IS - 2 SP - 1885 EP - 1894 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Dineva, Ekaterina A1 - Pearson, Jeniveve A1 - Ilyin, Ilya A1 - Verma, Meetu A1 - Diercke, Andrea A1 - Strassmeier, Klaus A1 - Denker, Carsten T1 - Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices JF - Astronomische Nachrichten = Astronomical notes N2 - The strong chromospheric absorption lines Ca ii H & K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 & 82 days in 2018 & 2019 and derive the Ca ii H & K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles. KW - astronomical databases KW - miscellaneous KW - methods KW - data analysis KW - activity KW - Sun KW - atmosphere KW - chromosphere KW - techniques KW - spectroscopic Y1 - 2022 U6 - https://doi.org/10.1002/asna.20223996 SN - 0004-6337 SN - 1521-3994 VL - 343 IS - 5 PB - Wiley-VCH CY - Weinheim ER -