TY - GEN A1 - Hornick, Thomas A1 - Bach, Lennart T. A1 - Crawfurd, Katharine J. A1 - Spilling, Kristian A1 - Achterberg, Eric Pieter A1 - Woodhouse, Jason Nicholas A1 - Schulz, Kai Georg A1 - Brussaard, Corina P. D. A1 - Riebesell, Ulf A1 - Grossart, Hans-Peter T1 - Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 667 KW - northern Baltic Sea KW - inorganic nutrients KW - mesocosm experiment KW - elevated CO2 KW - heterotrophic bacteria KW - organic-carbon KW - bacterioplankton KW - seawater KW - growth KW - temperature Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417126 SN - 1866-8372 IS - 667 ER - TY - GEN A1 - Nausch, Monika A1 - Bach, Lennart Thomas A1 - Czerny, Jan A1 - Goldstein, Josephine A1 - Grossart, Hans-Peter A1 - Hellemann, Dana A1 - Hornick, Thomas A1 - Achterberg, Eric Pieter A1 - Schulz, Kai Georg A1 - Riebesell, Ulf T1 - Effects of CO 2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea T2 - Biogeosciences N2 - Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-% of PO4 was converted into DOP whereby only 18aEuro-% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 424 KW - Eastern Gotland basin KW - nodularia spumigena KW - organic-matter KW - filamentous cyanobacteria KW - Ocean acidification KW - nitrogen-fixation KW - PCO(2) levels KW - elevated CO2 KW - Peece-III KW - seawater Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410274 ER - TY - GEN A1 - Spilling, Kristian A1 - Schulz, Kai Georg A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermúdez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 544 KW - tecdissolved organic nitrogen KW - sea plankton community KW - high CO2 ocean KW - Baltic Sea KW - elevated CO2 KW - marine viruses KW - Atlantic-ocean KW - Natural-waters KW - Flow-cytometry KW - technical note Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411835 SN - 1866-8372 IS - 544 ER - TY - THES A1 - Hornick, Thomas T1 - Impact of climate change effects on diversity and function of pelagic heterotrophic bacteria studied in large-scale mesocosm facilities T1 - Studien zum Einfluss des Klimawandels auf die Diversität und Funktion pelagischer heterotropher Bakterien in Mesokosmen N2 - Seit der Industriellen Revolution steigt die Konzentration von Kohlenstoffdioxid (CO2) und anderen Treibhausgasen in der Erdatmosphäre stetig an, wodurch wesentliche Prozesse im Erdsystem beeinflusst werden. Dies wird mit dem Begriff „Klimawandel“ umschrieben. Aquatische Ökosysteme sind sehr stark davon betroffen, da sie als Integral vieler Prozesse in einer Landschaft fungieren. Ziel dieser Doktorarbeit war zu bestimmen, wie verschiedene Auswirkungen des Klimawandels die Gemeinschaftsstruktur und Aktivität von heterotrophen Bakterien in Gewässern verändert, welche eine zentrale Rolle bei biogeochemischen Prozessen einnehmen. Diese Arbeit konzentriert sich auf zwei Aspekte des Klimawandels: (1) Ozeane nehmen einen Großteil des atmosphärischen CO2 auf, welches im Meerwasser das chemische Gleichgewicht des Karbonatsystems verschiebt („Ozeanversauerung“). (2) Durch kontinuierlichen Anstieg der Erdoberflächentemperatur werden Veränderungen im Klimasystem der Erde vorhergesagt, welche u. a. die Häufigkeit und Heftigkeit von episodischen Wetterereignissen (z.B. Stürme) verstärken wird. Insbesondere Sommer-Stürme sind dabei in der Lage die sommerliche Temperaturschichtung der Wassersäule in Seen zu zerstören. Beide Effekte des Klimawandels können weitreichende Auswirkungen auf Wasserchemie/-physik sowie die Verteilung von Organismen haben, was mittels Mesokosmen simuliert wurde. Dabei untersuchten wir den Einfluss der Ozeanversauerung auf heterotrophe bakterielle Prozesse in der Ostsee bei geringen Konzentrationen an gelösten Nährstoffen. Unsere Ergebnisse zeigen, dass Ozeanversauerungseffekte in Kombination mit Nährstofflimitation indirekt das Wachstum von heterotrophen Bakterien durch veränderte trophische Interaktionen beeinflussen können und potentiell zu einer Erhöhung der Autotrophie des Ökosystems führen. In einer weiteren Studie analysierten wir, wie Ozeanversauerung die Umsetzung und Qualität gelösten organischen Materials (DOM) durch heterotrophe Bakterien beeinflussen kann. Die Ergebnisse weisen jedoch darauf hin, dass Änderungen in der DOM-Qualität durch heterotrophe bakterielle Prozesse mit zunehmender Ozeanversauerung unwahrscheinlich sind. Desweiteren wurde der Einfluss eines starken Sommer-Sturmes auf den stratifizierten, oligotroph-mesotrophen Stechlinsee simuliert. Mittels oberflächlicher Durchmischung in Mesokosmen wurde die bestehende Thermokline zerstört und die durchmischte Oberflächenwasserschicht vergrößert. Dies änderte die physikalischen und chemischen Gradienten innerhalb der Wassersäule. Effekte der Einmischung von Tiefenwasser änderten in der Folge die Zusammensetzung der bakteriellen Gemeinschaftsstruktur und stimulierten das Wachstum filamentöser Cyanobakterien, die zu einer Cyanobakterien-Blüte führte und so maßgeblich die metabolischen Prozesse von heterotrophen Bakterien bestimmte. Unsere Studie gibt ein mechanistisches Verständnis, wie Sommer-Stürme bakterielle Gemeinschaften und Prozesse für längere Zeit während der sommerlichen Stratifizierung beeinflussen können. Die in dieser Arbeit präsentierten Ergebnisse zeigen Veränderungen bakterieller Gemeinschaften und Prozesse, welche mit dem einhergehenden Klimawandel erwartet werden können. Diese sollten bei Beurteilung klimarelevanter Fragen hinsichtlich eines zukünftigen Gewässer-managements Berücksichtigung finden. N2 - The unprecedented increase in atmospheric concentrations of carbon dioxide (CO2) and other greenhouse gases (GHG) by anthropogenic activities since the Industrial Revolution impacts on various earth system processes, commonly referred to as `climate change´ (CC). CC faces aquatic ecosystems with extreme abiotic perturbations that potentially alter the interrelations between functional autotrophic and heterotrophic plankton groups. These relations, however, modulate biogeochemical cycling and mediate the functioning of aquatic ecosystems as C sources or sinks to the atmosphere. The aim of this thesis was therefore to investigate how different aspects of CC influence community composition and functioning of pelagic heterotrophic bacteria. These organisms constitute a major component of biogeochemical cycling and largely determine the balance between autotrophic and heterotrophic processes. Due to the vast amount of potential CC impacts, this thesis focuses on the following two aspects: (1) Increased exchange of CO2 across the atmosphere-water interface and reaction of CO2 with seawater leads to profound shifts in seawater carbonate chemistry, commonly termed as `ocean acidification´ (OA), with consequences for organism physiology and the availability of dissolved inorganic carbon (DIC) in seawater. (2) The increase in atmospheric GHG concentration impacts on the efficiency with which the Earth cools to space, affecting global surface temperature and climate. With ongoing CC, shifts in frequency and severity of episodic weather events, such as storms, are expected that in particular might affect lake ecosystems by disrupting thermal summer stratification. Both aspects of CC were studied at the ecosystem-level in large-volume mesocosm experiments by using the Kiel Off-shore Mesocosms for Future Ocean Simulations (KOSMOS) deployed at different coastal marine locations, and the LakeLab facility in Lake Stechlin. We evaluated the impact of OA on heterotrophic bacterial metabolism in a brackish coastal ecosystem during low-nutrient summer months in the Baltic Sea. There are several in situ experiments that already assessed potential OA-induced changes in natural plankton communities at diverse spatial and seasonal conditions. However, most studies were performed at high phytoplankton biomass conditions, partly provoked by nutrient amendments. Our study highlights potential OA effects at low-nutrient conditions that are representative for most parts of the ocean and of particular interest in current OA research. The results suggest that during extended periods at low-nutrient concentrations, increasing pCO2 levels indirectly impact the growth balance of heterotrophic bacteria via trophic bacteria-phytoplankton interactions and shift the ecosystem to a more autotrophic system. Further work investigated how OA affects heterotrophic bacterial dissolved organic matter (DOM) transformation in two mesocsom studies, performed at different nutrient conditions. We observed similar succession patterns for individual compound pools during a phytoplankton bloom and subsequent accumulation of these compounds irrespective of the pCO2 treatment. Our results indicate that OA-induced changes in the dynamics of bacterial DOM transformation and potential impacts on DOM quality are unlikely. In addition, there have been no indications that in dependence of nutrient conditions, different amounts of photosynthetic organic matter are channelled into the more recalcitrant DOM pool. This provides novel insights into the general dynamics of the marine DOM pool. A fourth enclosure experiment in oligo-mesotrophic Lake Stechlin assessed the impact of a severe summer storm on lake bacterial communities during thermal stratification by artificially mixing. Mixing disrupted and lowered the thermocline, increasing the upper mixed layer and substantially changed water physical-chemical variables. Deep water entrainment and associated changes in water physical-chemical variables significantly affected relative bacterial abundances for about one week. Afterwards a pronounced cyanobacterial bloom developed in response to mixing which affected community assembly of heterotrophic bacteria. Colonization and mineralization of senescent phytoplankton cells by heterotrophic bacteria largely determined C-sequestration to the sediment. About six weeks after mixing, bacterial communities and measured activity parameters converged to control conditions. As such, summer storms have the potential to affect bacterial communities for a prolonged period during summer stratification. The results highlight effects on community assembly and heterotrophic bacterial metabolism that are associated to entrainment of deep water into the mixed water layer and assess consequences of an episodic disturbance event for the coupling between bacterial metabolism and autochthonous DOM production in large volume clear-water lakes. Altogether, this doctoral thesis reveales substantial sensitivities of heterotrophic bacterial metabolism and community structure in response to OA and a simulated summer storm event, which should be considered when assessing the impact of climate change on marine and lake ecosystems. KW - climate change KW - ocean acidification KW - Ozeanversauerung KW - Klimawandel KW - Gewässerökologie KW - heterotrophic bacteria Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428936 ER -