TY - GEN A1 - Beck, Michael A1 - Hildebrandt, Niko A1 - Löhmannsröben, Hans-Gerd T1 - Quantum dots as acceptors in FRET-assays containing serum N2 - Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive homogeneous fluoroimmunoassays (FIA). In this work we demonstrate energy transfer from Eu3+-trisbipyridin (Eu-TBP) donors to CdSe-ZnS-QD acceptors in solutions with and without serum. The QDs are commercially available CdSe-ZnS core-shell particles emitting at 655 nm (QD655). The FRET system was achieved by the binding of the streptavidin conjugated donors with the biotin conjugated acceptors. After excitation of Eu-TBP and as result of the energy transfer, the luminescence of the QD655 acceptors also showed lengthened decay times like the donors. The energy transfer efficiency, as calculated from the decay times of the bound and the unbound components, amounted to 37%. The Förster-radius, estimated from the absorption and emission bands, was ca. 77 Å. The effective binding ratio, which not only depends on the ratio of binding pairs but also on unspecific binding, was obtained from the donor emission dependent on the concentration. As serum promotes unspecific binding, the overall FRET efficiency of the assay was reduced. We conclude that QDs are good substitutes for acceptors in FRET if combined with slow decay donors like Europium. The investigation of the influence of the serum provides guidance towards improving binding properties of QD assays. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 019 KW - Quantenpunkt KW - Lumineszenz KW - Serum KW - Europium KW - Immunoassay KW - Energietransfer KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster-Resonanz-Energie-Transfer KW - Quantum Dot KW - Luminescence KW - Serum KW - Europium KW - Immunoassay KW - Energy Transfer KW - FRET Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-9504 ER - TY - THES A1 - Hildebrandt, Niko T1 - Lanthanides and quantum dots : time-resolved laser spectroscopy of biochemical Förster Resonance Energy Transfer (FRET) systems T1 - Lanthanide und Quantenpunkte : zeitaufgelöste Laserspektroskopie an biochemischen Förster-Resonanzenergietransfer (FRET) Systemen N2 - Förster Resonance Energy Transfer (FRET) plays an important role for biochemical applications such as DNA sequencing, intracellular protein-protein interactions, molecular binding studies, in vitro diagnostics and many others. For qualitative and quantitative analysis, FRET systems are usually assembled through molecular recognition of biomolecules conjugated with donor and acceptor luminophores. Lanthanide (Ln) complexes, as well as semiconductor quantum dot nanocrystals (QD), possess unique photophysical properties that make them especially suitable for applied FRET. In this work the possibility of using QD as very efficient FRET acceptors in combination with Ln complexes as donors in biochemical systems is demonstrated. The necessary theoretical and practical background of FRET, Ln complexes, QD and the applied biochemical models is outlined. In addition, scientific as well as commercial applications are presented. FRET can be used to measure structural changes or dynamics at distances ranging from approximately 1 to 10 nm. The very strong and well characterized binding process between streptavidin (Strep) and biotin (Biot) is used as a biomolecular model system. A FRET system is established by Strep conjugation with the Ln complexes and QD biotinylation. Three Ln complexes (one with Tb3+ and two with Eu3+ as central ion) are used as FRET donors. Besides the QD two further acceptors, the luminescent crosslinked protein allophycocyanin (APC) and a commercial fluorescence dye (DY633), are investigated for direct comparison. FRET is demonstrated for all donor-acceptor pairs by acceptor emission sensitization and a more than 1000-fold increase of the luminescence decay time in the case of QD reaching the hundred microsecond regime. Detailed photophysical characterization of donors and acceptors permits analysis of the bioconjugates and calculation of the FRET parameters. Extremely large Förster radii of more than 100 Å are achieved for QD as acceptors, considerably larger than for APC and DY633 (ca. 80 and 60 Å). Special attention is paid to interactions with different additives in aqueous solutions, namely borate buffer, bovine serum albumin (BSA), sodium azide and potassium fluoride (KF). A more than 10-fold limit of detection (LOD) decrease compared to the extensively characterized and frequently used donor-acceptor pair of Europium tris(bipyridine) (Eu-TBP) and APC is demonstrated for the FRET system, consisting of the Tb complex and QD. A sub-picomolar LOD for QD is achieved with this system in azide free borate buffer (pH 8.3) containing 2 % BSA and 0.5 M KF. In order to transfer the Strep-Biot model system to a real-life in vitro diagnostic application, two kinds of imunnoassays are investigated using human chorionic gonadotropin (HCG) as analyte. HCG itself, as well as two monoclonal anti-HCG mouse-IgG (immunoglobulin G) antibodies are labeled with the Tb complex and QD, respectively. Although no sufficient evidence for FRET can be found for a sandwich assay, FRET becomes obvious in a direct HCG-IgG assay showing the feasibility of using the Ln-QD donor-acceptor pair as highly sensitive analytical tool for in vitro diagnostics. N2 - Förster Resonanzenergietransfer (FRET) spielt eine wichtige Rolle in biochemischen Anwendungen, wie z.B. DNA-Sequenzierung, intrazellulären Protein-Protein-Wechselwirkungen, molekularen Bindungsstudien, in-vitro-Diagnostik und vielen anderen. Zur quantitativen und qualitativen Analyse werden FRET Systeme normalerweise durch molekulare Erkennung von Biomolekülen, die mit Donator- und Acceptorluminophoren markiert sind, ermöglicht. Durch die besonderen photophysikalischen Eigenschaften sowohl von Lanthanidkomplexen (Ln-Komplexen), als auch Halbleiternanokristallen (sog. Quantenpunkten oder Quantumdots - QD), sind diese besonders für FRET Anwendungen geeignet. In der vorliegenden Arbeit wird effizienter FRET zwischen Ln-Komplexen und QD in biochemischen Systemen demonstriert. Die notwendigen theoretischen und praktischen Grundlagen über FRET, Ln-Komplexe, QD und die verwendeten biochemischen Modelle werden dargestellt, und wissenschaftliche als auch kommerzielle Anwendungen werden präsentiert. FRET kann zur Messung von strukturellen Veränderungen und Dynamiken im Bereich von ca. 1 bis 10 nm verwendet werden. Der sehr starke und gut charakterisierte Bindungsprozess zwischen Streptavidin (Strep) und Biotin (Biot) wird als biomolekulares Modellsystem eingesetzt. Ein FRET System wird durch Streptavidinkonjugation mit Ln-Komplexen und QD-Biotinylierung etabliert. Drei Ln-Komplexe (einer mit Tb3+ und zwei mit Eu3+ als Zentralion) werden als Donatoren verwendet, und neben QD werden zwei weitere Acceptoren, das lumineszierende, quervernetzte Protein Allophycocyanin (APC) und ein kommerzieller Fluoreszenzfarbstoff (DY633), untersucht. FRET kann für alle Donator-Acceptor Paare nachgewiesen werden, zum einen durch sensibilisierte Acceptorlumineszenz und zum anderen durch eine über 1000-fach erhöhte Lumineszenzabklingzeit der QD mit über 100 Mikrosekunden. Mittels detailierter photophysikalischer Charakterisierung der Donatoren und Acceptoren können die Biokonjugate analysiert und die FRET Parameter berechnet werden. Für die QD FRET Systeme ergeben sich extrem große Försterradien von über 100 Å, die wesentlich größer sind als für APC und DY633 (ca. 80 bzw. 60 Å). Besondere Aufmerksamkeit gilt der Wechselwirkung mit den Zusatzreagenzien Boratpuffer, Bovines Serumalbumin (BSA), Natriumazid und Kaliumfluorid (KF) in den wässrigen Lösungen. Im Vergleich zum ausgiebig charakterisierten und vielfach verwendeten Donator-Acceptor Paar aus Europium-tris(Bipyridin) (Eu-TBP) und APC wird eine mehr als 10-fache Senkung der Nachweisgrenze für das FRET-System, bestehend aus Tb-Komplex und QD, erreicht. In azidfreiem Boratpuffer (pH 8,3) mit 2 % BSA und 0,5 M KF wird eine subpicomolare QD-Nachweisgrenze für dieses System aufgezeigt. Um den Transfer des Strep-Biot Modellsystems in eine echte in-vitro-diagnostische Anwendung zu demonstrieren, werden zwei Immuntests zum HCG-(Humanes Choriongonadotropin)-Nachweis untersucht. Sowohl HCG als auch monoklonale anti-HCG Maus-IgG-(Immunoglobulin G)-Antikörper werden mit dem Tb-Komplex bzw. mit QD markiert. Obwohl kein ausreichender Nachweis für FRET in einem immunometrischen Assay (oder Sandwichassay) erbracht werden kann, wird FRET in einem direkten HCG-IgG Assay erzielt, wodurch die Realisierbarkeit von Ln-QD Donator-Acceptor Paaren zur hochsensitiven Anwendung in der in-vitro-Diagnostik gezeigt werden kann. KW - FRET KW - Lanthanide KW - Quantenpunkte KW - Zeitaufgelöster Immunoassay KW - Spektroskopie KW - FRET KW - Lanthanides KW - Quantum Dots KW - Time-resolved Immunoassay KW - Spectroscopy Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12686 ER - TY - JOUR A1 - Hildebrandt, Niko A1 - Geissler, Daniel ED - Zahavy, E ED - Ordentlich, A ED - Yitzhaki, S ED - Shafferman, A T1 - Semiconductor quantum dots as FRET acceptors for multiplexed diagnostics and molecular ruler application JF - Advances in Experimental Medicine and Biology N2 - Applications based on Forster resonance energy transfer (FRET) play an important role for the determination of concentrations and distances within nanometer-scale systems in vitro and in vivo in many fields of biotechnology. Semiconductor nanocrystals (Quantum dots - QDs) possess ideal properties for their application as FRET acceptors when the donors have long excited state lifetimes and when direct excitation of QDs can be efficiently suppressed. Therefore, luminescent terbium complexes (LTCs) with excited state lifetimes of more than 2 ms are ideal FRET donor candidates for QD-acceptors. This chapter will give a short overview of theoretical and practical background of FRET, QDs and LTCs, and present some recent applications of LTC-QD FRET pairs for multiplexed ultra-sensitive in vitro diagnostics and nanometer-resolution molecular distance measurements. KW - Diagnostics KW - FRET KW - Imaging KW - Quantum dots KW - Terbium Y1 - 2012 SN - 978-94-007-2554-6 SN - 978-94-007-2555-3 U6 - https://doi.org/10.1007/978-94-007-2555-3_8 SN - 0065-2598 VL - 733 SP - 75 EP - 86 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Morgner, Frank A1 - Stufler, Stefan A1 - Geissler, Daniel A1 - Medintz, Igor L. A1 - Algar, W. Russ A1 - Susumu, Kimihiro A1 - Stewart, Michael H. A1 - Blanco-Canosa, Juan B. A1 - Dawson, Philip E. A1 - Hildebrandt, Niko T1 - Terbium to quantum dot FRET Bioconjugates for clinical diagnostics influence of human plasma on optical and assembly properties JF - Sensors N2 - Forster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Forster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma. KW - FRET KW - quantum dots KW - terbium KW - luminescence lifetime KW - blood KW - plasma KW - clinical diagnostics KW - biotin KW - streptavidin KW - histidin KW - immunoassay Y1 - 2011 U6 - https://doi.org/10.3390/s111009667 SN - 1424-8220 VL - 11 IS - 10 SP - 9667 EP - 9684 PB - MDPI CY - Basel ER -