TY - JOUR A1 - Wischke, Christian A1 - Baehr, Elen A1 - Racheva, Miroslava A1 - Heuchel, Matthias A1 - Weigel, Thomas A1 - Lendlein, Andreas T1 - Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis JF - MRS Advances N2 - Enzymes have recently attracted increasing attention in material research based on their capacity to catalyze the conversion of polymer-bound moieties for synthesizing polymer networks, particularly bulk hydrogels. hi this study. the surface immobilization of a relevant enzyme. mushroom tyrosinase, should be explored using glass as model surface. In a first step. the glass support was functionalized with silanes to introduce either amine or carboxyl groups, as confirmed e.g. by X-ray photoelectron spectroscopy. By applying glutaraldehyde and EDC/NHS chemistry, respectively, surfaces have been activated for subsequent successful coupling of tyrosinase. Via protein hydrolysis and amino acid characterization by HPLC, the quantity of bound tyrosinase was shown to correspond to a full surface coverage. Based on the visualized enzymatic conversion of a test substrate at the glass support. the functionalized surfaces may be explored for surface-associated material synthesis in the future. Y1 - 2018 U6 - https://doi.org/10.1557/adv.2018.630 SN - 2059-8521 VL - 3 IS - 63 SP - 3875 EP - 3881 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wang, Li A1 - Razzaq, Muhammad Yasar A1 - Rudolph, Tobias A1 - Heuchel, Matthias A1 - Nöchel, Ulrich A1 - Mansfeld, Ulrich A1 - Jiang, Yi A1 - Gould, Oliver E. C. A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Reprogrammable, magnetically controlled polymeric nanocomposite actuators JF - Material horizons N2 - Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers’ actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators’ geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance. Y1 - 2018 U6 - https://doi.org/10.1039/c8mh00266e SN - 2051-6347 SN - 2051-6355 VL - 5 IS - 5 SP - 861 EP - 867 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wang, Li A1 - Heuchel, Matthias A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Influence of a polyester coating of magnetic nanoparticles on magnetic heating behavior of shape-memory polymer-based composites JF - Journal of applied biomaterials & functional materials N2 - Background: Magnetic composites of thermosensitive shape-memory polymers (SMPs) and magnetite nanoparticles (MNPs) allow noncontact actuation of the shape-memory effect in an alternating magnetic field. In this study, we investigated whether the magnetic heating capability of cross-linked poly(epsilon-caprolactone)/MNP composites (cPCLC) could be improved by covalent coating of MNPs with oligo(epsilon-caprolactone) (OCL). Methods: Two different types of cPCLC containing uncoated and OCL-coated MNP with identical magnetite weight content were prepared by thermally induced polymerization of poly(epsilon-caprolactone) diisocyanatoethyl methacrylate. Both cPCLCs exhibited a melting transition at T-m = 48 degrees C, which could be used as switching transition. Results: The dispersion of the embedded nanoparticles within the polymer matrix could be substantially improved, when the OCL-coated MNPs were used, as visualized by scanning electron microscopy. We could further demonstrate that in this way the maximal achievable bulk temperature (T-bulk) obtained within the cPCLC test specimen in magnetic heating experiments at a magnetic field strength of H = 30 kA.m(-1) could be increased from T bulk = 48 degrees C to T bulk = 74 degrees C. KW - Magnetic composites KW - Magnetite nanoparticles KW - Polymer networks KW - Shape-memory effect Y1 - 2012 U6 - https://doi.org/10.5301/JABFM.2012.10293 SN - 2280-8000 VL - 10 IS - 3 SP - 203 EP - 209 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes JF - Materials and design N2 - Fibrous shape-memory polymer (SMP) scaffolds were investigated considering the fiber as basic microstructural feature. By reduction of the fiber diameter in randomly oriented electrospun polyetherurethane (PEU) meshes from the micro-to the nano-scale, we observed changes in the molecular orientation within the fibers and its impact on the structural and shape-memory performance. It was assumed that a spatial restriction by reduction of the fiber diameter increases molecular orientation along the orientation of the fiber. The stress-strain relation of random PEU scaffolds is initially determined by the 3D arrangement of the fibers and thus is independent of the molecular orientation. Increasing the molecular orientation with decreasing single fiber diameter in scaffolds composed of randomly arranged fibers did not alter the initial stiffness and peak stress but strongly influenced the elongation at break and the stress increase above the Yield point. Reduction of the single fiber diameter also distinctly improved the shape-memory performance of the scaffolds. Fibers with nanoscale diameters (< 100 nm) possessed an almost complete shape recovery, high recovery stresses and fast relaxation kinetics, while the shape fixity was found to decrease with decreasing fiber diameter. Hence, the fiber diameter is a relevant design parameter for SMP. KW - Nanofiber KW - Shape-memory polymer KW - Electrospinning KW - Function by design KW - Molecular orientation Y1 - 2021 U6 - https://doi.org/10.1016/j.matdes.2021.109546 SN - 1873-4197 VL - 202 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Farhan, Muhammad A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Design and fabrication of fiber mesh actuators JF - Applied materials today N2 - Soft actuator performance can be tuned by chemistry or mechanical manipulation, but this adjustability is limited especially in view of their growing technological relevance. Inspired from textile engineering, we designed and fabricated fiber mesh actuators and introduced new features like anisotropic behavior and soft-tissue like elastic deformability. Design criteria for the meshes are the formation of fiber bundles, the angle between fiber bundles in different stacked layers and covalent crosslinks forming within and between fibers at their interfacial contact areas. Through crosslinking the interfiber bond strength increased from a bond transmitting neither axial nor rotational loads (pin joint) to a bond strength capable of both (welded joint). For non-linear elastic stiffening, stacked fiber bundles with four embracing fibers were created forming microstructural rhombus shapes. Loading the rhombus diagonally allowed generation of “soft tissue”-like mechanics. By adjustment of stacking angles, the point of strong increase in stress is tuned. While the highest stresses are observed in aligned and crosslinked fiber mats along the direction of the fiber, the strongest shape-memory actuation behavior is found in randomly oriented fiber mats. Fiber mesh actuators controlled by temperature are of high significance as soft robot skins and as for active patches supporting tissue regeneration. Y1 - 2022 U6 - https://doi.org/10.1016/j.apmt.2022.101562 SN - 2352-9407 VL - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Razzaq, Muhammad Yasar A1 - Behl, Marc A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design JF - Macromolecular rapid communications N2 - Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments. KW - artificial muscles KW - magnetosensitivity KW - nanocomposites KW - soft actuators Y1 - 2019 U6 - https://doi.org/10.1002/marc.201900440 SN - 1022-1336 SN - 1521-3927 VL - 41 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Thin-layer studies on surface functionalization of polyetherimide BT - hydrolysis versus amidation JF - Journal of materials research : JMR / Materials Research Society N2 - Among the high-performance and engineering polymers, polyimides and the closely related polyetherimide (PEI) stand out by their capability to react with nucleophiles under relatively mild conditions. By targeting the phthalimide groups in the chain backbone, post-functionalization offers a pathway to adjust surface properties such as hydrophilicity, solvent resistance, and porosity. Here, we use ultrathin PEI films on a Langmuir trough as a model system to investigate the surface functionalization with ethylene diamine and tetrakis(4-aminophenyl)porphyrin as multivalent nucleophiles. By means of AFM, Raman spectroscopy, and interfacial rheology, we show that hydrolysis enhances the chemical and mechanical stability of ultrathin films and allows for the formation of EDC/NHS-activated esters. Direct amidation of PEI was achieved in the presence of a Lewis acid catalyst, resulting in free amine groups rather than cross-linking. When comparing amidation with hydrolysis, we find a greater influence of the latter on material properties. KW - Membrane KW - Nanostructure KW - Polymer KW - Raman spectroscopy KW - Scanning probe microscopy (SPM) KW - Surface reaction KW - Thin film Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00339-7 SN - 0884-2914 SN - 2044-5326 VL - 37 IS - 1 SP - 67 EP - 76 PB - Springer CY - Berlin ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Hydrolytic stability of polyetherimide investigated in ultrathin films JF - Journal of materials research : JMR / Materials Research Society N2 - Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis. KW - 2D materials KW - Membrane KW - Polymer KW - Water KW - Nanostructure Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00267-6 SN - 0884-2914 SN - 2044-5326 VL - 36 IS - 14 SP - 2987 EP - 2994 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lendlein, Andreas A1 - Heuchel, Matthias T1 - Shape-memory polymers designed in view of thermomechanical energy storage and conversion systems BT - Effective temporary shape fixation by strain-induced formation of supramolecular nanostructures enables high energy density one-way shape-memory polymers JF - ACS central science KW - Actuators KW - Deformation KW - Energy KW - Energy storage KW - Polymers Y1 - 2021 U6 - https://doi.org/10.1021/acscentsci.1c01032 SN - 2374-7951 VL - 7 IS - 10 SP - 1599 EP - 1601 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kumar, Reddi K. A1 - Heuchel, Matthias A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jankowski, Joachim A1 - Tetali, Sarada D. T1 - Effects of extracts prepared from modified porous poly(ether imide) microparticulate absorbers on cytotoxicity, macrophage differentiation and proinflammatory behavior of human monocytic (THP-1) cells JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Remaining uremic toxins in the blood of chronic renal failure patients represent one central challenge in hemodialysis therapies. Highly porous poly(ether imide) (PEI) microparticles have been recently introduced as candidate absorber materials, which show a high absorption capacity for uremic toxins and allow hydrophilic surface modification suitable for minimization of serum protein absorption. In this work, the effects of extracts prepared from PEI microparticles modified by nucleophilic reaction with low molecular weight polyethylene imine (Pei) or potassium hydroxide (KOH), on human monocytic (THP-1) cells are studied. The obtained results suggested that the extracts of Pei and KOH modified PEI absorbers have no negative effect on THP-1 cell viability and do not initiate the critical differentiation towards macrophages. The extracts did not enhance transcript or protein levels of investigated proinflammatory markers in THP-1 cells, namely, TNF alpha, MCP1, IL6 and IL8. Based on these findings such modified PEI microparticles should be qualified for further pre-clinical evaluation i.e. in an in vivo animal experiment. KW - Chronic kidney disease KW - hemodialysis KW - Inflammation KW - Porous poly(ether imide) microparticulate absorbers KW - THP-1 cells KW - Uremic toxins Y1 - 2018 U6 - https://doi.org/10.3233/CH-189112 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 1-2 SP - 175 EP - 185 PB - IOS Press CY - Amsterdam ER -