TY - JOUR A1 - Franz, Kristina A1 - Ost, Mario A1 - Otten, Lindsey A1 - Herpich, Catrin A1 - Coleman, Verena A1 - Endres, Anne-Sophie A1 - Klaus, Susanne A1 - Müller-Werdan, Ursula A1 - Norman, Kristina T1 - Higher serum levels of fibroblast growth factor 21 in old patients with cachexia JF - Nutrition : the international journal of applied and basic nutritional sciences N2 - Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved. KW - Fibroblast growth factor 21 KW - Cachexia KW - Anorexia KW - Aging KW - Biomarker Y1 - 2018 U6 - https://doi.org/10.1016/j.nut.2018.11.004 SN - 0899-9007 SN - 1873-1244 VL - 63-64 SP - 81 EP - 86 PB - Elsevier CY - New York ER - TY - GEN A1 - Haß, Ulrike A1 - Herpich, Catrin A1 - Norman, Kristina T1 - Anti-Inflammatory Diets and Fatigue T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals’ use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 803 KW - chronic fatigue KW - cancer KW - fatigue reduction diet KW - probiotics KW - polyphenols KW - omega-3 fatty acids KW - anti-inflammatory nutrition KW - cytokines KW - inflammation KW - myalgic encephalomyelitis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441172 SN - 1866-8372 IS - 803 ER - TY - JOUR A1 - Haß, Ulrike A1 - Herpich, Catrin A1 - Norman, Kristina T1 - Anti-Inflammatory Diets and Fatigue JF - Nutrients N2 - Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals’ use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue. KW - chronic fatigue KW - cancer KW - fatigue reduction diet KW - probiotics KW - polyphenols KW - omega-3 fatty acids KW - anti-inflammatory nutrition KW - cytokines KW - inflammation KW - myalgic encephalomyelitis Y1 - 2019 U6 - https://doi.org/10.3390/nu11102315 SN - 2072-6643 VL - 11 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Herpich, Catrin A1 - Haß, Ulrike A1 - Kochlik, Bastian Max A1 - Franz, Kristina A1 - Laeger, Thomas A1 - Klaus, Susanne A1 - Bosy-Westphal, Anja A1 - Norman, Kristina T1 - Postprandial dynamics and response of fibroblast growth factor 21 in older adults JF - Clinical Nutrition N2 - Background & aims: Fibroblast growth factor 21 (FGF21) plays a pivotal role in glucose and lipid metabolism and has been proposed as a longevity hormone. However, elevated plasma FGF21 concentrations are paradoxically associated with mortality in higher age and little is known about the postprandial regulation of FGF21 in older adults. In this parallel group study, we investigated postprandial FGF21 dynamics and response in older (65-85 years) compared to younger (18-35 years) adults following test meals with varying macronutrient composition. Methods: Participants (n = 60 older; n = 60 younger) were randomized to one of four test meals: dextrose, high carbohydrate (HC), high fat (HF) or high protein (HP). Blood was drawn before and 15, 30, 60, 120, 240 min after meal ingestion. Postprandial dynamics were evaluated using repeated measures ANCOVA. FGF21 response was assessed by incremental area under the curve. Results: Fasting FGF21 concentrations were significantly higher in older adults. FGF21 dynamics were affected by test meal (p < 0.001) and age (p = 0.013), when adjusted for BMI and fasting FGF21. Postprandial FGF21 concentrations steadily declined over 240 min in both age groups after HF and HP, but not after dextrose or HC ingestion. At 240 min, FGF21 concentrations were significantly higher in older than in younger adults following dextrose (133 pg/mL, 95%CI: 103, 172 versus 91.2 pg/mL, 95%CI: 70.4, 118; p = 0.044), HC (109 pg/mL, 95%CI: 85.1, 141 versus 70.3 pg/mL, 95%CI: 55.2, 89.6; p = 0.014) and HP ingestion (45.4 pg/mL, 95%CI: 34.4, 59.9 versus 27.9 pg/mL 95%CI: 20.9, 37.1; p = 0.018). FGF21 dynamics and response to HF were similar for both age groups. Conclusions: The age-specific differences in postprandial FGF21 dynamics and response in healthy adults, potentially explain higher FGF21 concentrations in older age. Furthermore, there appears to be a significant impact of acute and recent protein intake on FGF21 secretion. Y1 - 2021 U6 - https://doi.org/10.1016/j.clnu.2021.04.037 SN - 0261-5614 SN - 1532-1983 VL - 40 IS - 6 SP - 3765 EP - 3771 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Herpich, Catrin A1 - Müller-Werdan, Ursula A1 - Norman, Kristina T1 - Role of plant-based diets in promoting health and longevity JF - Maturitas : The European menopause journal N2 - Western-style obesity-promoting diets are associated with increased inflammation, higher disease incidence and mortality. In contrast, plant-based diets (PBDs), which incorporate large amounts of vegetables and fruit, legumes, whole grains and only a small amount of meat, are generally associated with better health and lower mortality. This narrative review summarizes the evidence on health and life span in adults adhering to PBDs and discusses the potentially longevity-promoting mechanism of PBDs as well as limitations due to nutrient deficiencies. Epidemiologic studies consistently report lower mortality rates in adults who adhering to PBDs when compared with people whose diet regularly includes meat. PBDs are associated with many health benefits, such as improved metabolic and inflammatory profile. In turn, the incidence of cardiovascular disease is lower in adults consuming PBDs, which contributes to their better health. The health-promoting effects of PBDs are still not entirely clear but most likely multifactorial and include modulation of the gut microbiome. The interest in possible longevity-promoting mechanisms of PBDs has increased in recent years, as many characteristics of PBDs such as protein restriction and restriction of certain amino acids are known to extend the life span. While there is ample evidence from animal studies, large-scale human studies, which also provide insight into the specific mechanisms of the effect of PBDs on longevity, are missing. However, due to the lower protein content of PBDs, there appears to be an age limit for the anticipated health effects, as adults over 65 require larger amounts of protein. KW - plant-based diets KW - mortality KW - health span KW - longevity Y1 - 2022 U6 - https://doi.org/10.1016/j.maturitas.2022.07.003 SN - 0378-5122 SN - 1873-4111 VL - 165 SP - 47 EP - 51 PB - Elsevier Science CY - Amsterdam [u.a.] ER -