TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Henneberger, Kirstin A1 - Fickel, Jörns A1 - Hofreiter, Michael A1 - Foerste, Daniel W. G. T1 - Ancestral mitogenome capture of the Southeast Asian banded linsang JF - PLoS ONE N2 - Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives. KW - Shotgun sequencing KW - Mitochondria KW - Phylogenetics KW - Phylogenetic analysis KW - Paleogenetics KW - Sequence alignment KW - Genomics KW - Museum collections Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0234385 SN - 1932-6203 VL - 15 IS - 6 PB - PLOS CY - San Francisco, California, US ER - TY - GEN A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Henneberger, Kirstin A1 - Fickel, Jörns A1 - Hofreiter, Michael A1 - Foerste, Daniel W. G. T1 - Ancestral mitogenome capture of the Southeast Asian banded linsang T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 972 KW - Shotgun sequencing KW - Mitochondria KW - Phylogenetics KW - Phylogenetic analysis KW - Paleogenetics KW - Sequence alignment KW - Genomics KW - Museum collections Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474441 SN - 1866-8372 IS - 972 ER - TY - GEN A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 505 KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422555 SN - 1866-8372 IS - 505 ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations JF - BMC Evolutionary Biology N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2018 U6 - https://doi.org/10.1186/s12862-018-1268-0 SN - 1471-2148 VL - 18 IS - 156 PB - BioMed Central und Springer CY - London, Berlin und Heidelberg ER - TY - JOUR A1 - Alberti, Federica A1 - Gonzalez, Javier A1 - Paijmans, Johanna L. A. A1 - Basler, Nikolas A1 - Preick, Michaela A1 - Henneberger, Kirstin A1 - Trinks, Alexandra A1 - Rabeder, Gernot A1 - Conard, Nicholas J. A1 - Muenzel, Susanne C. A1 - Joger, Ulrich A1 - Fritsch, Guido A1 - Hildebrandt, Thomas A1 - Hofreiter, Michael A1 - Barlow, Axel T1 - Optimized DNA sampling of ancient bones using Computed Tomography scans JF - Molecular ecology resources N2 - The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era. KW - ancient DNA KW - computer tomography KW - palaeogenomics KW - paleogenetics KW - petrous bone Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12911 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1196 EP - 1208 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Gonzalez-Fortes, Gloria M. A1 - Tassi, Francesca A1 - Ghirotto, Silvia A1 - Henneberger, Kirstin A1 - Hofreiter, Michael A1 - Barbujani, Guido T1 - The Neolithic transition at the Western edge of Europe T2 - American journal of physical anthropology Y1 - 2017 SN - 0002-9483 SN - 1096-8644 VL - 162 SP - 198 EP - 198 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kabelitz, Tina A1 - Kappel, Christian A1 - Henneberger, Kirstin A1 - Benke, Eileen A1 - Noeh, Christiane A1 - Bäurle, Isabel T1 - eQTL mapping of transposon silencing reveals a position-dependent stable escape from epigenetic silencing and transposition of AtMu1 in thee arabidopsis lineage JF - The plant cell N2 - Transposons are massively abundant in all eukaryotic genomes and are suppressed by epigenetic silencing. Transposon activity contributes to the evolution of species; however, it is unclear how much transposition-induced variation exists at a smaller scale and how transposons are targeted for silencing. Here, we exploited differential silencing of the AtMu1c transposon in the Arabidopsis thaliana accessions Columbia (Col) and Landsberg erecta (Ler). The difference persisted in hybrids and recombinant inbred lines and was mapped to a single expression quantitative trait locus within a 20-kb interval. In Ler only, this interval contained a previously unidentified copy of AtMu1c, which was inserted at the 39 end of a protein-coding gene and showed features of expressed genes. By contrast, AtMu1c(Col) was intergenic and associated with heterochromatic features. Furthermore, we identified widespread natural AtMu1c transposition from the analysis of over 200 accessions, which was not evident from alignments to the reference genome. AtMu1c expression was highest for insertions within 39 untranslated regions, suggesting that this location provides protection from silencing. Taken together, our results provide a species-wide view of the activity of one transposable element at unprecedented resolution, showing that AtMu1c transposed in the Arabidopsis lineage and that transposons can escape epigenetic silencing by inserting into specific genomic locations, such as the 3' end of genes. Y1 - 2014 U6 - https://doi.org/10.1105/tpc.114.128512 SN - 1040-4651 SN - 1532-298X VL - 26 IS - 8 SP - 3261 EP - 3271 PB - American Society of Plant Physiologists CY - Rockville ER -