TY - JOUR A1 - Pauly, Maren A1 - Helle, Gerhard A1 - Miramont, Cecile A1 - Buentgen, Ulf A1 - Treydte, Kerstin A1 - Reinig, Frederick A1 - Guibal, Frederic A1 - Sivan, Olivier A1 - Heinrich, Ingo A1 - Riedel, Frank A1 - Kromer, Bernd A1 - Balanzategui, Daniel A1 - Wacker, Lukas A1 - Sookdeo, Adam A1 - Brauer, Achim T1 - Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas JF - Scientific reports N2 - Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32251-2 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Liang, Wei A1 - Heinrich, Ingo A1 - Simard, Sonia A1 - Helle, Gerhard A1 - Linan, Isabel Dorado A1 - Heinken, Thilo T1 - Climate signals derived from cell anatomy of Scots pine in NE Germany JF - Tree physiology N2 - Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e. g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone. KW - cell structure KW - dendroclimatology KW - Pinus sylvestris KW - quantitative wood anatomy KW - tree rings Y1 - 2013 U6 - https://doi.org/10.1093/treephys/tpt059 SN - 0829-318X SN - 1758-4469 VL - 33 IS - 8 SP - 833 EP - 844 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Liang, Wei A1 - Heinrich, Ingo A1 - Helle, Gerhard A1 - Linan, Isabel Dorado A1 - Heinken, Thilo T1 - Applying CLSM to increment core surfaces for histometric analyses a novel advance in quantitative wood anatomy JF - Dendrochronologia : an interdisciplinary journal of tree-ring science N2 - A novel procedure has been developed to conduct cell structure measurements on increment core samples of conifers. The procedure combines readily available hardware and software equipment. The essential part of the procedure is the application of a confocal laser scanning microscope (CLSM) which captures images directly from increment cores surfaced with the advanced WSL core-microtome. Cell wall and lumen are displayed with a strong contrast due to the monochrome black and green nature of the images. Consecutive images are merged into long images representing entire increment cores which are then analysed for cell structures in suitable software. KW - Wood anatomy KW - Cell structures KW - Confocal laser scanning microscopy KW - CLSM KW - Dendrochronology KW - Surface preparation Y1 - 2013 U6 - https://doi.org/10.1016/j.dendro.2012.09.002 SN - 1125-7865 VL - 31 IS - 2 SP - 140 EP - 145 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Siegmund, Jonatan F. A1 - Sanders, Tanja G. M. A1 - Heinrich, Ingo A1 - van der Maaten, Ernst A1 - Simard, Sonia A1 - Helle, Gerhard A1 - Donner, Reik Volker T1 - Meteorological Drivers of Extremes in Daily Stem Radius Variations of Beech, Oak, and Pine in Northeastern Germany: An Event Coincidence Analysis JF - Frontiers in plant science N2 - Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem radius variations, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem radius variations (SRV) of three domestic tree species (beech, oak, and pine) from 2012 to 2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme SRVs, where extremes are defined with respect to the common values at a given phase of the annual growth period. Besides defining extreme events based on individual meteorological variables, we additionally introduce conditional and joint ECA as new multivariate extensions of the original methodology and apply them for testing 105 different combinations of variables regarding their impact on SRV extremes. Our results reveal a strong susceptibility of all three species to the extremes of several meteorological variables. Yet, the inter-species differences regarding their response to the meteorological extremes are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only. We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions. KW - dendrometer measurements KW - event coincidence analysis KW - climate extremes KW - growth response Y1 - 2016 U6 - https://doi.org/10.3389/fpls.2016.00733 SN - 1664-462X VL - 7 SP - 4701 EP - 4712 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Brunello, Camilla Francesca A1 - Andermann, Christoff A1 - Helle, Gerhard A1 - Comiti, Francesco A1 - Tonon, Giustino A1 - Tiwari, Achyut A1 - Hovius, Niels ED - Vance, D. T1 - Hydroclimatic seasonality recorded by tree ring delta O-18 signature across a Himalayan altitudinal transect JF - Earth & planetary science letters N2 - Water stable isotope ratios of tropical precipitation predominantly reflect moisture source and precipitation intensity. Trees can incorporate the isotopic signals into annual tree-ring cellulose records, permitting reconstruction of the temporal changes of hydroclimate over decades to millennia. This is especially valuable in the Himalayas where the understanding of monsoon dynamics is limited by the lack of a dense and representative observational network. We have analyzed tree ring delta O-18 records from two distinct physiographic sites along the upper Kali Gandaki valley in the central Nepal Himalayas, representing the wet High-Himalayas and the Trans-Himalayan dryland to the north. Empirical correlations and regression analyses were compared to an in-situ calibrated oxygen isotope fractionation model, exploring the relationships between tree ring delta O-18 and seasonal-mean variability of hydroclimatic forcing at the different locations. For this purpose, gridded precipitation data from the Asian rain gauge dataset APHRODITE, as well as high resolution onsite observations (relative humidity, air temperature, delta O-18 of precipitation and radial tree growth) were used. We found that two distinct sets of meteorological values, reflecting pre-monsoon and monsoon conditions, are needed to reproduce the measured tree ring delta O-18 values from the High-Himalayan site, but that a single set of monsoonal values performs best for the Trans-Himalayan site. We conclude that Trans-Himalayan trees capture long-term changes in strength of the Indian summer monsoon. In contrast, High-Himalayan tree ring delta(18)Orecords a more complex hydro-climatic signal reflecting both pre-monsoon and monsoon seasons with very contrasting isotopic signatures of precipitation. This difference in the two hydroclimatic proxy records offers an opportunity to reconstruct first-order hydroclimate conditions, such as local precipitation rates, and to gain new insights into monsoon timing and seasonal water source determination across the Himalayan orographic region. (C) 2019 Elsevier B.V. All rights reserved. KW - Himalayan hydroclimate KW - seasonal precipitation KW - pre-monsoon KW - monsoon onset KW - oxygen fractionation model KW - dendroclimatology Y1 - 2019 U6 - https://doi.org/10.1016/j.epsl.2019.04.030 SN - 0012-821X SN - 1385-013X VL - 518 SP - 148 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER -