TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Pelz, Patricia A1 - Heinz, Andreas A1 - Walter, Henrik A1 - Kathmann, Norbert A1 - Rapp, Michael Armin A1 - Stelzel, Christine T1 - Neural correlates of training and transfer effects in working memory in older adults JF - NeuroImage : a journal of brain function N2 - As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12 sessions (45 min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75 years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. (C) 2016 Elsevier Inc. All rights reserved. KW - Aging KW - Working memory KW - Training KW - Transfer KW - Neuroimaging KW - fMRI KW - Updating KW - Executive functions KW - Fluid intelligence Y1 - 2016 U6 - https://doi.org/10.1016/j.neuroimage.2016.03.068 SN - 1053-8119 SN - 1095-9572 VL - 134 SP - 236 EP - 249 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Quynh-Lam Duong, A1 - Rapp, Michael Armin A1 - Deserno, Lorenz T1 - Prefrontal-parietal effective connectivity during working memory in older adults JF - Neurobiology of Aging N2 - Theoretical models and preceding studies have described age-related alterations in neuronal activation of frontoparietal regions in a working memory (WM)load-dependent manner. However, to date, underlying neuronal mechanisms of these WM load-dependent activation changes in aging remain poorly understood. The aim of this study was to investigate these mechanisms in terms of effective connectivity by application of dynamic causal modeling with Bayesian Model Selection. Eighteen healthy younger (age: 20-32 years) and 32 older (60-75 years) participants performed an n-back task with 3 WM load levels during functional magnetic resonance imaging (fMRI). Behavioral and conventional fMRI results replicated age group by WM load interactions. Importantly, the analysis of effective connectivity derived from dynamic causal modeling, indicated an age-and performance-related reduction in WM load-dependent modulation of connectivity from dorsolateral prefrontal cortex to inferior parietal lobule. This finding provides evidence for the proposal that age-related WM decline manifests as deficient WM load-dependent modulation of neuronal top-down control and can integrate implications from theoretical models and previous studies of functional changes in the aging brain. KW - Aging KW - Dynamic causal modeling (DCM) KW - Effective connectivity KW - Functional magnetic resonance imaging (fMRI) KW - Working memory Y1 - 2017 U6 - https://doi.org/10.1016/j.neurobiolaging.2017.05.005 SN - 0197-4580 SN - 1558-1497 VL - 57 SP - 18 EP - 27 PB - Elsevier CY - New York ER - TY - JOUR A1 - Heinzel, Stephan A1 - Riemer, Thomas G. A1 - Schulte, Stefanie A1 - Onken, Johanna A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Catechol-O-methyltransferase (COMT) genotype affects age-related changes in plasticity in working memory: a pilot study JF - BioMed research international N2 - Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24-30 years) and 25 older (aged 60-75 years) healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P < .001), which was larger in younger as compared to older adults (P < .001). Age-related differences were qualified by an interaction with COMT genotype (P < .001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism. Y1 - 2014 U6 - https://doi.org/10.1155/2014/414351 SN - 2314-6133 SN - 2314-6141 PB - Hindawi Publishing Corp. CY - New York ER - TY - JOUR A1 - Heissel, Andreas A1 - Pietrek, Anou F. A1 - Rapp, Michael Armin A1 - Heinzel, Stephan A1 - Williams, Geoffrey T1 - Perceived health care climate of older people attending an exercise program BT - validation of the german short version of the health care climate questionnaire JF - Journal of aging and physical activity : JAPA ; the official journal of the International Society for Aging and Physical Activity N2 - The role of perceived need support from exercise professionals in improving mental health was examined in a sample of older adults, thereby validating the short Health Care Climate Questionnaire. A total of 491 older people (M = 72.68 years; SD = 5.47) attending a health exercise program participated in this study. Cronbach's alpha was found to be high (alpha = .90). Satisfaction with the exercise professional correlated moderately with the short Health Care Climate Questionnaire mean value (r = .38; p < .01). The mediator analyses yielded support for the self-determination theory process model in older adults by showing both basic need satisfaction and frustration as mediating variables between perceived autonomy support and depressive symptoms. The short Health Care Climate Questionnaire is an economical instrument for assessing basic need satisfaction provided by the exercise therapist from the participant's perspective. Furthermore, this cross-sectional study supported the link from coaching style to the satisfaction/frustration of basic psychological needs, which in turn, predicted mental health. Analyses of criterion validity suggest a revision of the construct by integrating need frustration. KW - autonomy support KW - basic psychological need satisfaction and frustration KW - depression KW - need support KW - physical activity Y1 - 2019 U6 - https://doi.org/10.1123/japa.2018-0350 SN - 1063-8652 SN - 1543-267X VL - 28 IS - 2 SP - 276 EP - 286 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lawrence, Jimmy B. A1 - Kallies, Gunnar A1 - Rapp, Michael Armin A1 - Heissel, Andreas T1 - Using Exercise to Fight Depression in Older Adults BT - A Systematic Review and Meta-Analysis JF - GeroPsych : the journal of gerontopsychology and geriatric psychiatry N2 - Depression is the most prevalent psychiatric disorder in the general population. Despite a large demand for efficient treatment options, the majority of older depressed adults does not receive adequate treatment: Additional low-threshold treatments are needed for this age group. Over the past two decades, a growing number of randomized controlled trials (RCT) have been conducted, testing the efficacy of physical exercise in the alleviation of depression in older adults. This meta-analysis systematically reviews and evaluates these studies; some subanalyses testing specific effects of different types of exercise and settings are also performed. In order to be included, exercise programs of the RCTs had to fulfill the criteria of exercise according to the American College of Sports Medicine, including a sample mean age of 60 or above and an increased level of depressive symptoms. Eighteen trials with 1,063 participants fulfilled our inclusion criteria. A comparison of the posttreatment depression scores between the exercise and control groups revealed a moderate effect size in favor of the exercise groups (standardized mean difference (SMD) of –0.68, p < .001). The effect was comparable to the results achieved when only the eleven trials with low risk of bias were included (SMD = –0.63, p < .001). The subanalyses showed significant effects for all types of exercise and for supervised interventions. The results of this meta-analysis suggest that physical exercise may serve as a feasible, additional intervention to fight depression in older adults. However, because of small sample sizes of the majority of individual trials and high statistical heterogeneity, results must be interpreted carefully. KW - depression KW - exercise KW - older adults KW - meta-analysis KW - review Y1 - 2015 U6 - https://doi.org/10.1024/1662-9647/a000133 SN - 1662-9647 SN - 1662-971X VL - 28 SP - 149 EP - 162 PB - Hogrefe CY - Cambridge, Mass. ; Göttingen [u.a.] ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael Armin T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study JF - Frontiers in human neuroscience N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. KW - working memory KW - cognitive training KW - modality KW - dual-task KW - aging KW - transfer KW - fMRI KW - neuroimaging Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00085 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Brockhaus, Wolf-Ruediger A1 - Wuestenberg, Torsten A1 - Kathmann, Norbert A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Working memory load-dependent brain response predicts behavioral training gains in older adults JF - The journal of neuroscience N2 - In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency and capacity, as reflected by more "youth-like" brain response patterns in regions of interest of the frontoparietal WM network, were associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both neural efficiency (i. e., decreased activation at comparable performance levels) and capacity (i. e., increasing activation with increasing WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency in older adults. KW - aging KW - fMRI KW - neuroimaging KW - plasticity KW - training KW - working memory Y1 - 2014 U6 - https://doi.org/10.1523/JNEUROSCI.2463-13.2014 SN - 0270-6474 VL - 34 IS - 4 SP - 1224 EP - 1233 PB - Society for Neuroscience CY - Washington ER - TY - JOUR A1 - Kuschpel, Maxim S. A1 - Liu, Shuyan A1 - Schad, Daniel A1 - Heinzel, Stephan A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task JF - Frontiers in psychology N2 - The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game “Angry Birds” before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the “Angry Birds” video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity. KW - break interventions KW - computer games KW - mozart effect KW - working memory KW - attention KW - cognitive resources KW - mind wandering Y1 - 2015 U6 - https://doi.org/10.3389/fpsyg.2015.01683 SN - 1664-1078 IS - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis JF - Acta Psychologica N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - https://doi.org/10.1016/j.actpsy.2022.103540 SN - 1873-6297 VL - 225 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stelzel, Christine A1 - Bohle, Hannah A1 - Schauenburg, Gesche A1 - Walter, Henrik A1 - Granacher, Urs A1 - Rapp, Michael Armin A1 - Heinzel, Stephan T1 - Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking JF - Frontiers in psychologie N2 - There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments. KW - balance KW - dual task KW - fMRI KW - postural control KW - working memory Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.01075 SN - 1664-1078 VL - 9 PB - Frontiers CY - Lausanne ER -