TY - JOUR A1 - Salzmann, Ingo A1 - Heimel, Georg A1 - Duhm, Steffen A1 - Oehzelt, Martin A1 - Pingel, Patrick A1 - George, Benjamin M. A1 - Schnegg, Alexander A1 - Lips, Klaus A1 - Blum, Ralf-Peter A1 - Vollmer, Antje A1 - Koch, Norbert T1 - Intermolecular hybridization governs molecular electrical doping JF - Physical review letters N2 - Current models for molecular electrical doping of organic semiconductors are found to be at odds with other well-established concepts in that field, like polaron formation. Addressing these inconsistencies for prototypical systems, we present experimental and theoretical evidence for intermolecular hybridization of organic semiconductor and dopant frontier molecular orbitals. Common doping-related observations are attributed to this phenomenon, and controlling the degree of hybridization emerges as a strategy for overcoming the present limitations in the yield of doping-induced charge carriers. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.108.035502 SN - 0031-9007 VL - 108 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Ghani, Fatemeh A1 - Opitz, Andreas A1 - Pingel, Patrick A1 - Heimel, Georg A1 - Salzmann, Ingo A1 - Frisch, Johannes A1 - Neher, Dieter A1 - Tsami, Argiri A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Charge Transfer in and Conductivity of Molecularly Doped Thiophene-Based Copolymers JF - Journal of polymer science : B, Polymer physics N2 - The electrical conductivity of organic semiconductors can be enhanced by orders of magnitude via doping with strong molecular electron acceptors or donors. Ground-state integer charge transfer and charge-transfer complex formation between organic semiconductors and molecular dopants have been suggested as the microscopic mechanisms causing these profound changes in electrical materials properties. Here, we study charge-transfer interactions between the common molecular p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane and a systematic series of thiophene-based copolymers by a combination of spectroscopic techniques and electrical measurements. Subtle variations in chemical structure are seen to significantly impact the nature of the charge-transfer species and the efficiency of the doping process, underlining the need for a more detailed understanding of the microscopic doping mechanism in organic semiconductors to reliably guide targeted chemical design. KW - charge transfer KW - conducting polymers KW - doping KW - thiophene Y1 - 2015 U6 - https://doi.org/10.1002/polb.23631 SN - 0887-6266 SN - 1099-0488 VL - 53 IS - 1 SP - 58 EP - 63 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lange, Ilja A1 - Reiter, Sina A1 - Paetzel, Michael A1 - Zykov, Anton A1 - Nefedov, Alexei A1 - Hildebrandt, Jana A1 - Hecht, Stefan A1 - Kowarik, Stefan A1 - Woell, Christof A1 - Heimel, Georg A1 - Neher, Dieter T1 - Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers JF - Advanced functional materials N2 - Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers. KW - ZnO KW - self-assembled monolayers KW - phosphonic acid KW - surface modification KW - electrodes Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201401493 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 44 SP - 7014 EP - 7024 PB - Wiley-VCH CY - Weinheim ER -