TY - JOUR A1 - Heidbach, Oliver A1 - Rajabi, Mojtaba A1 - Cui, Xiaofeng A1 - Fuchs, Karl A1 - Mueller, Birgit A1 - Reinecker, John A1 - Reiter, Karsten A1 - Tingay, Mark A1 - Wenzel, Friedemann A1 - Xie, Furen A1 - Ziegler, Moritz O. A1 - Zoback, Mary-Lou A1 - Zoback, Mark T1 - The World Stress Map database release 2016 BT - Crustal stress pattern across scales JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Knowledge of the present-day crustal in-situ stress field is a key for the understanding of geodynamic processes such as global plate tectonics and earthquakes. It is also essential for the management of geo-reservoirs and underground storage sites for energy and waste. Since 1986, the World Stress Map (WSM) project has systematically compiled the orientation of maximum horizontal stress (S-Hmax). For the 30th anniversary of the project, the WSM database has been updated significantly with 42,870 data records which is double the amount of data in comparison to the database release in 2008. The update focuses on areas with previously sparse data coverage to resolve the stress pattern on different spatial scales. In this paper, we present details of the new WSM database release 2016 and an analysis of global and regional stress pattern. With the higher data density, we can now resolve stress pattern heterogeneities from plate-wide to local scales. In particular, we show two examples of 40 degrees-60 degrees S-Hmax rotations within 70 km. These rotations can be used as proxies to better understand the relative importance of plate boundary forces that control the long wave-length pattern in comparison to regional and local controls of the crustal stress state. In the new WSM project phase IV that started in 2017, we will continue to further refine the information on the S-Hmax orientation and the stress regime. However, we will also focus on the compilation of stress magnitude data as this information is essential for the calibration of geomechanical-numerical models. This enables us to derive a 3-D continuous description of the stress tensor from point-wise and incomplete stress tensor information provided with the WSM database. Such forward models are required for safety aspects of anthropogenic activities in the underground and for a better understanding of tectonic processes such as the earthquake cycle. KW - Tectonic stress KW - Database KW - Stress tensor KW - Geomechanical modelling Y1 - 2018 U6 - https://doi.org/10.1016/j.tecto.2018.07.007 SN - 0040-1951 SN - 1879-3266 VL - 744 SP - 484 EP - 498 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - von Specht, Sebastian A1 - Heidbach, Oliver A1 - Cotton, Fabrice Pierre A1 - Zang, Arno T1 - Uncertainty reduction of stress tensor inversion with data-driven catalogue selection JF - Geophysical journal international N2 - The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is commonly done on a spatial basis, that is, hypocentres. However, this selection approach may include data that are undesired, for example, by mixing events that are caused by different stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase of FM data in the past decades, objective data-driven data selection is feasible, allowing more refined FM catalogues that avoid these issues and provide data weights for the STI routines. We present the application of angular classification with expectation-maximization (ACE) as a tool for data selection. ACE identifies clusters of FM without a priori information. The identified clusters can be used for the classification of the style-of-faulting and as weights of the FM data. We demonstrate that ACE effectively selects data that can be associated with a single stress tensor. Two application examples are given for weighted STI from South America. We use the resulting clusters and weights as a priori information for an STI for these regions and show that uncertainties of the stress tensor estimates are reduced significantly. KW - Inverse Theory KW - Statistical Methods KW - Seismicity KW - tectonics KW - Kinematics of crustal KW - mantle deformation Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy240 SN - 0956-540X SN - 1365-246X VL - 214 IS - 3 SP - 2250 EP - 2263 PB - Oxford Univ. Press CY - Oxford ER -