TY - JOUR A1 - McGinnis, Daniel F. A1 - Flury, Sabine A1 - Tang, Kam W. A1 - Grossart, Hans-Peter T1 - Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp. BT - an energetic advantage JF - Scientific reports N2 - Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m−2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01–2 mol m−2 yr−1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1–6 mol m−2 yr−1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake’s biogeochemistry, carbon cycling and food web structure. Y1 - 2017 U6 - https://doi.org/10.1038/srep44478 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Wurzbacher, Christian A1 - Fuchs, Andrea A1 - Attermeyer, Katrin A1 - Frindte, Katharina A1 - Grossart, Hans-Peter A1 - Hupfer, Michael A1 - Casper, Peter A1 - Monaghan, Michael T. T1 - Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1–4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5–14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper “replacement horizon” is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower “depauperate horizon” is characterized by low taxonomic richness, more stable “low-energy” conditions, and a dominance of enigmatic Archaea. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1111 KW - Archaea KW - Eukaryota KW - Bacteria KW - community KW - freshwater KW - lake KW - DNA metabarcoding KW - beta-diversity KW - sediment KW - turnover Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431965 SN - 1866-8372 IS - 1111 ER - TY - JOUR A1 - Rojas-Jimenez, Keilor A1 - Wurzbacher, Christian A1 - Bourne, Elizabeth Charlotte A1 - Chiuchiolo, Amy A1 - Priscu, John C. A1 - Grossart, Hans-Peter T1 - Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica JF - Scientific reports N2 - Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-15598-w SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Mestre, Mireia A1 - Ferrera, Isabel A1 - Borrull, Encarna A1 - Ortega-Retuerta, Eva A1 - Mbedi, Susan A1 - Grossart, Hans-Peter A1 - Gasol, Josep M. A1 - Sala, M. Montserrat T1 - Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum JF - Molecular ecology N2 - Biotic and abiotic particles shape the microspatial architecture that defines the microbial aquatic habitat, being particles highly variable in size and quality along oceanic horizontal and vertical gradients. We analysed the prokaryotic (bacterial and archaeal) diversity and community composition present in six distinct particle size classes ranging from the pico-to the microscale (0.2 to 200 lm). Further, we studied their variations along oceanographic horizontal (from the coast to open oceanic waters) and vertical (from the ocean surface into the meso-and bathypelagic ocean) gradients. In general, prokaryotic community composition was more variable with depth than in the transition from the coast to the open ocean. Comparing the six size-fractions, distinct prokaryotic communities were detected in each size-fraction, and whereas bacteria were more diverse in the larger size-fractions, archaea were more diverse in the smaller size-fractions. Comparison of prokaryotic community composition among particle size-fractions showed that most, but not all, taxonomic groups have a preference for a certain size-fraction sustained with depth. Species sorting, or the presence of diverse ecotypes with distinct size-fraction preferences, may explain why this trend is not conserved in all taxa. KW - attached KW - free-living KW - particulate matter KW - prokaryotic community KW - spatial variability Y1 - 2017 U6 - https://doi.org/10.1111/mec.14421 SN - 0962-1083 SN - 1365-294X VL - 26 SP - 6827 EP - 6840 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kettner, Marie Therese A1 - Rojas-Jimenez, Keilor A1 - Oberbeckmann, Sonja A1 - Labrenz, Matthias A1 - Großart, Hans-Peter T1 - Microplastics alter composition of fungal communities in aquatic ecosystems JF - Environmental microbiology N2 - Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13891 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 4447 EP - 4459 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bjorneras, C. A1 - Weyhenmeyer, G. A. A1 - Evans, C. D. A1 - Gessner, M. O. A1 - Großart, Hans-Peter A1 - Kangur, K. A1 - Kokorite, I. A1 - Kortelainen, P. A1 - Laudon, H. A1 - Lehtoranta, J. A1 - Lottig, N. A1 - Monteith, D. T. A1 - Noges, P. A1 - Noges, T. A1 - Oulehle, F. A1 - Riise, G. A1 - Rusak, J. A. A1 - Raike, A. A1 - Sire, J. A1 - Sterling, S. A1 - Kritzberg, E. S. T1 - Widespread Increases in Iron Concentration in European and North American Freshwaters JF - Global biogeochemical cycles N2 - Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters. Y1 - 2017 U6 - https://doi.org/10.1002/2017GB005749 SN - 0886-6236 SN - 1944-9224 VL - 31 SP - 1488 EP - 1500 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Attermeyer, Katrin A1 - Grossart, Hans-Peter A1 - Flury, Sabine A1 - Premke, Katrin T1 - Bacterial processes and biogeochemical changes in the water body of kettle holes - mainly driven by autochthonous organic matter? JF - Aquatic sciences : research across boundaries N2 - Kettle holes are small inland waters formed from glacially-created depressions often situated in agricultural landscapes. Due to their high perimeter-to-area ratio facilitating a high aquatic-terrestrial coupling, kettle holes can accumulate high concentrations of organic carbon and nutrients, fueling microbial activities and turnover rates. Thus, they represent hotspots of carbon turnover in the landscape, but their bacterial activities and controlling factors have not been well investigated. Therefore, we aimed to assess the relative importance of various environmental factors on bacterial and biogeochemical processes in the water column of kettle holes and to disentangle their variations. In the water body of ten kettle holes in north-eastern Germany, we measured several physico-chemical and biological parameters such as carbon quantity and quality, as well as bacterial protein production (BP) and community respiration (CR) in spring, early summer and autumn 2014. Particulate organic matter served as an indicator of autochthonous production and represented an important parameter to explain variations in BP and CR. This notion is supported by qualitative absorbance indices of dissolved molecules in water samples and C: N ratios of the sediments, which demonstrate high fractions of autochthonous organic matter (OM) in the studied kettle holes. In contrast, dissolved chemical parameters were less important for bacterial activities although they revealed strong differences throughout the growing season. Pelagic bacterial activities and dynamics might thus be regulated by autochthonous OM in kettle holes implying a control of important biogeochemical processes by internal primary production rather than facilitated exchange with the terrestrial surrounding due to a high perimeter-to-area ratio. KW - Bacterial production KW - Carbon turnover KW - Growth efficiency KW - Ponds KW - Respiration KW - DOC quality KW - LC-OCD Y1 - 2017 U6 - https://doi.org/10.1007/s00027-017-0528-1 SN - 1015-1621 SN - 1420-9055 VL - 79 SP - 675 EP - 687 PB - Springer CY - Basel ER - TY - JOUR A1 - Hornak, Karel A1 - Kasalicky, Vojtech A1 - Simek, Karel A1 - Großart, Hans-Peter T1 - Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria JF - Environmental microbiology N2 - We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l(-1) and 1 mg l(-1) respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13900 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 4519 EP - 4535 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Amalfitano, Stefano A1 - Corno, Gianluca A1 - Eckert, Ester A1 - Fazi, Stefano A1 - Ninio, Shira A1 - Callieri, Cristiana A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Tracing particulate matter and associated microorganisms in freshwaters JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Sediment resuspension represents a key process in all natural aquatic systems, owing to its role in nutrient cycling and transport of potential contaminants. Although suspended solids are generally accepted as an important quality parameter, current monitoring programs cover quantitative aspects only. Established methodologies do not provide information on origin, fate, and risks associated with uncontrolled inputs of solids in waters. Here we discuss the analytical approaches to assess the occurrence and ecological relevance of resuspended particulate matter in freshwaters, with a focus on the dynamics of associated contaminants and microorganisms. Triggered by the identification of specific physical-chemical traits and community structure of particle-associated microorganisms, recent findings suggest that a quantitative determination of microorganisms can be reasonably used to trace the origin of particulate matter by means of nucleic acid-based assays in different aquatic systems. KW - Total suspended solids KW - Resuspended particulate KW - Turbidity KW - Sediment traps KW - Particle-associated microorganisms KW - Pathogens Y1 - 2017 U6 - https://doi.org/10.1007/s10750-017-3260-x SN - 0018-8158 SN - 1573-5117 VL - 800 SP - 145 EP - 154 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Tang, Kam W. A1 - Flury, Sabine A1 - Grossart, Hans-Peter A1 - McGinnis, Daniel F. T1 - The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes JF - Water research N2 - Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C flavicans at different temperatures yielding a Q(10) of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. (C) 2017 Elsevier Ltd. All rights reserved. KW - Chaoborus KW - Eutrophication KW - Oxygen KW - Nutrient KW - Remediation Y1 - 2017 U6 - https://doi.org/10.1016/j.watres.2017.05.058 SN - 0043-1354 VL - 122 SP - 36 EP - 41 PB - Elsevier CY - Oxford ER -