TY - GEN A1 - Panzer, Marcel A1 - Bender, Benedict A1 - Gronau, Norbert T1 - Neural agent-based production planning and control BT - an architectural review T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Nowadays, production planning and control must cope with mass customization, increased fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key process indicators. To manage that complex task, neural networks that can process large quantities of high-dimensional data in real time have been widely adopted in recent years. Although these are already extensively deployed in production systems, a systematic review of applications and implemented agent embeddings and architectures has not yet been conducted. The main contribution of this paper is to provide researchers and practitioners with an overview of applications and applied embeddings and to motivate further research in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse applications, but are also increasingly implemented in multi-agent environments or in combination with conventional methods — leveraging performances compared to benchmarks and reducing dependence on human experience. This not only implies a more sophisticated focus on distributed production resources, but also broadening the perspective from a local to a global scale. Nevertheless, future research must further increase scalability and reproducibility to guarantee a simplified transfer of results to reality. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 172 KW - production planning and control KW - machine learning KW - neural networks KW - systematic literature review KW - taxonomy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604777 SN - 1867-5808 ER - TY - JOUR A1 - Panzer, Marcel A1 - Bender, Benedict A1 - Gronau, Norbert T1 - Neural agent-based production planning and control BT - an architectural review JF - Journal of Manufacturing Systems N2 - Nowadays, production planning and control must cope with mass customization, increased fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key process indicators. To manage that complex task, neural networks that can process large quantities of high-dimensional data in real time have been widely adopted in recent years. Although these are already extensively deployed in production systems, a systematic review of applications and implemented agent embeddings and architectures has not yet been conducted. The main contribution of this paper is to provide researchers and practitioners with an overview of applications and applied embeddings and to motivate further research in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse applications, but are also increasingly implemented in multi-agent environments or in combination with conventional methods — leveraging performances compared to benchmarks and reducing dependence on human experience. This not only implies a more sophisticated focus on distributed production resources, but also broadening the perspective from a local to a global scale. Nevertheless, future research must further increase scalability and reproducibility to guarantee a simplified transfer of results to reality. KW - production planning and control KW - machine learning KW - neural networks KW - systematic literature review KW - taxonomy Y1 - 2022 U6 - https://doi.org/10.1016/j.jmsy.2022.10.019 SN - 0278-6125 SN - 1878-6642 VL - 65 SP - 743 EP - 766 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Bender, Benedict A1 - Gronau, Norbert ED - Bui, Tung T1 - Introduction to the Minitrack on towards the future of enterprise systems T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Enterprise systems have long played an important role in businesses of various sizes. With the increasing complexity of today’s business relationships, pecialized application systems are being used more and more. Moreover, emerging technologies such as artificial intelligence are becoming accessible for enterprise systems. This raises the question of the future role of enterprise systems. This minitrack covers novel ideas that contribute to and shape the future role of enterprise systems with five contributions. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 188 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-605406 SN - 978-0-9981331-5-7 SN - 1867-5808 ER -