TY - JOUR A1 - Teichmann, Malte A1 - Ullrich, André A1 - Kotarski, David A1 - Gronau, Norbert T1 - Facing the demographic change BT - recommendations for designing learning factories as age-appropriate teaching-learning environments for older blue-collar workers JF - SSRN eLibrary / Social Science Research Network N2 - Digitization and demographic change are enormous challenges for companies. Learning factories as innovative learning places can help prepare older employees for the digital change but must be designed and configured based on their specific learning requirements. To date, however, there are no particular recommendations to ensure effective age-appropriate training of bluecollar workers in learning factories. Therefore, based on a literature review, design characteristics and attributes of learning factories and learning requirements of older employees are presented. Furthermore, didactical recommendations for realizing age-appropriate learning designs in learning factories and a conceptualized scenario are outlined by synthesizing the findings. KW - learning factory KW - vocational training KW - learning environment KW - age-appropriate competence development KW - demographic change Y1 - 2021 U6 - https://doi.org/10.2139/ssrn.3858716 SN - 1556-5068 PB - Social Science Electronic Publ. CY - [Erscheinungsort nicht ermittelbar] ER - TY - JOUR A1 - Ullrich, André A1 - Teichmann, Malte A1 - Gronau, Norbert T1 - Fast trainable capabilities in software engineering-skill development in learning factories JF - Ji suan ji jiao yu = Computer Education / Qing hua da xue N2 - The increasing demand for software engineers cannot completely be fulfilled by university education and conventional training approaches due to limited capacities. Accordingly, an alternative approach is necessary where potential software engineers are being educated in software engineering skills using new methods. We suggest micro tasks combined with theoretical lessons to overcome existing skill deficits and acquire fast trainable capabilities. This paper addresses the gap between demand and supply of software engineers by introducing an actionoriented and scenario-based didactical approach, which enables non-computer scientists to code. Therein, the learning content is provided in small tasks and embedded in learning factory scenarios. Therefore, different requirements for software engineers from the market side and from an academic viewpoint are analyzed and synthesized into an integrated, yet condensed skills catalogue. This enables the development of training and education units that focus on the most important skills demanded on the market. To achieve this objective, individual learning scenarios are developed. Of course, proper basic skills in coding cannot be learned over night but software programming is also no sorcery. KW - learning factory KW - programming skills KW - software engineering KW - training Y1 - 2021 U6 - https://doi.org/10.16512/j.cnki.jsjjy.2020.12.002 SN - 1672-5913 IS - 12 SP - 2 EP - 10 PB - [Verlag nicht ermittelbar] CY - Bei jing shi ER -