TY - JOUR A1 - Ahmadi, Hamid A1 - Herat, Nehara A1 - Alizadeh, Shahab A1 - Button, Duane C. A1 - Granacher, Urs A1 - Behm, David G. T1 - Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance JF - PLOS ONE / Public Library of Science N2 - Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1%, Z2p = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, Z2p = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force (Z2p = 0.61, p = 0.0009) during inversion (75%) than upright (65.3%) conditions. Overall, BFR decreased MVC force 4.8% (Z2p = 0.37, p = 0.05). For upright position, BFR induced 21.0% reductions in M-wave amplitude (Z2p = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40-60 s intervals and post-30-s MVC (upright< inversion, and without BFR< BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0245311 SN - 1932-6203 VL - 16 IS - 5 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 3 KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484130 IS - 3 ER - TY - JOUR A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study JF - Sensors N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - https://doi.org/10.3390/s20185104 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - GEN A1 - Aloui, Ali A1 - Tayech, Amel A1 - Arbi Mejri, Mohamed A1 - Makhlouf, Issam A1 - Clark, Cain C. T. A1 - Granacher, Urs A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf T1 - Reliability and Validity of a New Taekwondo-Specific Change-of-Direction Speed Test With Striking Techniques in Elite Taekwondo Athletes: A Pilot Study T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The purpose of this study was to examine the test-retest reliability, and convergent and discriminative validity of a new taekwondo-specific change-of-direction (COD) speed test with striking techniques (TST) in elite taekwondo athletes. Twenty (10 males and 10 females) elite (athletes who compete at national level) and top-elite (athletes who compete at national and international level) taekwondo athletes with an average training background of 8.9 ± 1.3 years of systematic taekwondo training participated in this study. During the two-week test-retest period, various generic performance tests measuring COD speed, balance, speed, and jump performance were carried out during the first week and as a retest during the second week. Three TST trials were conducted with each athlete and the best trial was used for further analyses. The relevant performance measure derived from the TST was the time with striking penalty (TST-TSP). TST-TSP performances amounted to 10.57 ± 1.08 s for males and 11.74 ± 1.34 s for females. The reliability analysis of the TST performance was conducted after logarithmic transformation, in order to address the problem of heteroscedasticity. In both groups, the TST demonstrated a high relative test-retest reliability (intraclass correlation coefficients and 90% compatibility limits were 0.80 and 0.47 to 0.93, respectively). For absolute reliability, the TST’s typical error of measurement (TEM), 90% compatibility limits, and magnitudes were 4.6%, 3.4 to 7.7, for males, and 5.4%, 3.9 to 9.0, for females. The homogeneous sample of taekwondo athletes meant that the TST’s TEM exceeded the usual smallest important change (SIC) with 0.2 effect size in the two groups. The new test showed mostly very large correlations with linear sprint speed (r = 0.71 to 0.85) and dynamic balance (r = −0.71 and −0.74), large correlations with COD speed (r = 0.57 to 0.60) and vertical jump performance (r = −0.50 to −0.65), and moderate correlations with horizontal jump performance (r = −0.34 to −0.45) and static balance (r = −0.39 to −0.44). Top-elite athletes showed better TST performances than elite counterparts. Receiver operating characteristic analysis indicated that the TST effectively discriminated between top-elite and elite taekwondo athletes. In conclusion, the TST is a valid, and sensitive test to evaluate the COD speed with taekwondo specific skills, and reliable when considering ICC and TEM. Although the usefulness of the TST is questioned to detect small performance changes in the present population, the TST can detect moderate changes in taekwondo-specific COD speed. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 789 KW - taekwondo-specific testing KW - sport-specific performance KW - striking combat sports KW - sensitivity KW - taekwondo electronic scoring system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563192 SN - 1866-8364 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Aloui, Ali A1 - Tayech, Amel A1 - Arbi Mejri, Mohamed A1 - Makhlouf, Issam A1 - Clark, Cain C. T. A1 - Granacher, Urs A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf T1 - Reliability and Validity of a New Taekwondo-Specific Change-of-Direction Speed Test With Striking Techniques in Elite Taekwondo Athletes: A Pilot Study JF - Frontiers in Physiology N2 - The purpose of this study was to examine the test-retest reliability, and convergent and discriminative validity of a new taekwondo-specific change-of-direction (COD) speed test with striking techniques (TST) in elite taekwondo athletes. Twenty (10 males and 10 females) elite (athletes who compete at national level) and top-elite (athletes who compete at national and international level) taekwondo athletes with an average training background of 8.9 ± 1.3 years of systematic taekwondo training participated in this study. During the two-week test-retest period, various generic performance tests measuring COD speed, balance, speed, and jump performance were carried out during the first week and as a retest during the second week. Three TST trials were conducted with each athlete and the best trial was used for further analyses. The relevant performance measure derived from the TST was the time with striking penalty (TST-TSP). TST-TSP performances amounted to 10.57 ± 1.08 s for males and 11.74 ± 1.34 s for females. The reliability analysis of the TST performance was conducted after logarithmic transformation, in order to address the problem of heteroscedasticity. In both groups, the TST demonstrated a high relative test-retest reliability (intraclass correlation coefficients and 90% compatibility limits were 0.80 and 0.47 to 0.93, respectively). For absolute reliability, the TST’s typical error of measurement (TEM), 90% compatibility limits, and magnitudes were 4.6%, 3.4 to 7.7, for males, and 5.4%, 3.9 to 9.0, for females. The homogeneous sample of taekwondo athletes meant that the TST’s TEM exceeded the usual smallest important change (SIC) with 0.2 effect size in the two groups. The new test showed mostly very large correlations with linear sprint speed (r = 0.71 to 0.85) and dynamic balance (r = −0.71 and −0.74), large correlations with COD speed (r = 0.57 to 0.60) and vertical jump performance (r = −0.50 to −0.65), and moderate correlations with horizontal jump performance (r = −0.34 to −0.45) and static balance (r = −0.39 to −0.44). Top-elite athletes showed better TST performances than elite counterparts. Receiver operating characteristic analysis indicated that the TST effectively discriminated between top-elite and elite taekwondo athletes. In conclusion, the TST is a valid, and sensitive test to evaluate the COD speed with taekwondo specific skills, and reliable when considering ICC and TEM. Although the usefulness of the TST is questioned to detect small performance changes in the present population, the TST can detect moderate changes in taekwondo-specific COD speed. KW - taekwondo-specific testing KW - sport-specific performance KW - striking combat sports KW - sensitivity KW - taekwondo electronic scoring system Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.774546 SN - 1664-042X VL - 13 SP - 1 EP - 15 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00608 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study JF - Frontiers in Physiology N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00995 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 666 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482330 SN - 1866-8364 IS - 666 ER - TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 644 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472961 SN - 1866-8364 IS - 644 ER - TY - JOUR A1 - Azadian, Elaheh A1 - Majlesi, Mahdi A1 - Jafarnezhadgero, Amir Ali A1 - Granacher, Urs T1 - The impact of hearing loss on three-dimensional lower limb joint torques during walking in prepubertal boys JF - Journal of bodywork and movement therapies N2 - Introduction: In children, the impact of hearing loss on biomechanical gait parameters is not well understood. Thus, the objectives of this study were to examine three-dimensional lower limb joint torques in deaf compared to age-matched healthy (hearing) children while walking at preferred gait speed. Methods: Thirty prepubertal boys aged 8-14 were enrolled in this study and divided into a group with hearing loss (deaf group) and an age-matched healthy control. Three-dimensional joint torques were analyzed during barefoot walking at preferred speed using Kistler force plates and a Vicon motion capture system. Results: Findings revealed that boys with hearing loss showed lower joint torques in ankle evertors, knee flexors, abductors and internal rotators as well as in hip internal rotators in both, the dominant and non-dominant lower limbs (all p < 0.05; d = 1.23-7.00; 14-79%). Further, in the dominant limb, larger peak ankle dorsiflexor (p < 0.001; d = 1.83; 129%), knee adductor (p < 0.001; d = 3.20; 800%), and hip adductor torques (p < 0.001; d = 2.62; 350%) were found in deaf participants compared with controls. Conclusion: The observed altered lower limb torques during walking are indicative of unstable gait in children with hearing loss. More research is needed to elucidate whether physical training (e.g., balance and/or gait training) has the potential to improve walking performance in this patient group. (C) 2019 Elsevier Ltd. All rights reserved. KW - torque KW - hearing loss KW - gait KW - dominant limb KW - non-dominant limb Y1 - 2020 U6 - https://doi.org/10.1016/j.jbmt.2019.10.013 SN - 1360-8592 SN - 1532-9283 VL - 24 IS - 2 SP - 123 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Behm, David G. A1 - Alizadeh, Shahab A1 - Drury, Ben A1 - Granacher, Urs A1 - Moran, Jason T1 - Non-local acute stretching effects on strength performance in healthy young adults JF - European journal of applied physiology N2 - Background Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. Objective The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. Methods A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. Results Unilateral stretching protocols from six studies involved 6.3 +/- 2 repetitions of 36.3 +/- 7.4 s with 19.3 +/- 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 +/- 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 +/- 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. Conclusion The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others. KW - Flexibility KW - Power KW - Crossover KW - Fatigue KW - Mental fatigue KW - Neural inhibition Y1 - 2021 U6 - https://doi.org/10.1007/s00421-021-04657-w SN - 1439-6319 SN - 1439-6327 VL - 121 IS - 6 SP - 1517 EP - 1529 PB - Springer CY - Berlin ; Heidelberg ER - TY - GEN A1 - Behm, David George A1 - Mühlbauer, Thomas A1 - Kibele, Armin A1 - Granacher, Urs T1 - Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis (vol 45, pg 1645, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0497-x SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 451 EP - 451 PB - Springer CY - Northcote ER - TY - JOUR A1 - Behm, David George A1 - Young, James D. A1 - Whitten, Joseph H. D. A1 - Reid, Jonathan C. A1 - Quigley, Patrick J. A1 - Low, Jonathan A1 - Li, Yimeng A1 - Lima, Camila D. A1 - Hodgson, Daniel D. A1 - Chaouachi, Anis A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis JF - Frontiers in physiology N2 - Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities. KW - children KW - boys KW - girls KW - plyometric training KW - resistance training Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00423 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gäbler, Martijn A1 - Devita, Paul A1 - Hortobagyi, Tibor T1 - Power Training-induced Increases in Muscle Activation during Gait in Old Adults JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - Introduction/Purpose: Aging modifies neuromuscular activation of agonist and antagonist muscles during walking. Power training can evoke adaptations in neuromuscular activation that underlie gains in muscle strength and power but it is unknown if these adaptations transfer to dynamic tasks such as walking. We examined the effects of lower-extremity power training on neuromuscular activation during level gait in old adults. Methods: Twelve community-dwelling old adults (age >= 65 yr) completed a 10-wk lower-extremity power training program and 13 old adults completed a 10-wk control period. Before and after the interventions, we measured maximal isometric muscle strength and electromyographic (EMG) activation of the right knee flexor, knee extensor, and plantarflexor muscles on a dynamometer and we measured EMG amplitudes, activation onsets and offsets, and activation duration of the knee flexors, knee extensors, and plantarflexors during gait at habitual, fast, and standardized (1.25 +/- 0.6 m.s(-1)) speeds. Results: Power training-induced increases in EMG amplitude (similar to 41%; 0.47 <= d <= 1.47; P <= 0.05) explained 33% (P = 0.049) of increases in isometric muscle strength (similar to 43%; 0.34 <= d <= 0.80; P <= 0.05). Power training-induced gains in plantarflexor activation during push-off (+11%; d = 0.38; P = 0.045) explained 57% (P = 0.004) of the gains in fast gait velocity (+4%; d = 0.31; P = 0.059). Furthermore, power training increased knee extensor activation (similar to 18%; 0.26 <= d <= 0.29; P <= 0.05) and knee extensor coactivation during the main knee flexor burst (similar to 24%, 0.26 <= d <= 0.44; P <= 0.05) at habitual and fast speed but these adaptations did not correlate with changes in gait velocity. Conclusions: Power training increased neuromuscular activation during isometric contractions and level gait in old adults. The power training-induced neuromuscular adaptations were associated with increases in isometric muscle strength and partly with increases in fast gait velocity. KW - WALKING KW - MUSCLE KW - EXERCISE KW - EMG Y1 - 2017 U6 - https://doi.org/10.1249/MSS.0000000000001345 SN - 0195-9131 SN - 1530-0315 VL - 49 SP - 2198 EP - 2205 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Vandervoort, A. A. A1 - DeVita, P. A1 - Hortobagyi, Tibor T1 - The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown JF - Ageing research reviews : ARR N2 - Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22% and 12% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19% and 9% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35% and 13% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions. KW - Aging KW - Strength training KW - Power training KW - Gait biomechanics Y1 - 2013 U6 - https://doi.org/10.1016/j.arr.2013.03.001 SN - 1568-1637 VL - 12 IS - 2 SP - 618 EP - 627 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Hortobagyi, Tibor A1 - Beurskens, Rainer A1 - Lenzen-Grossimlinghaus, Romana A1 - Gabler, Martijn A1 - Granacher, Urs T1 - Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS) JF - Gerontology N2 - Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel KW - Aging KW - Walking speed KW - Exercise KW - Muscle power KW - Gait kinematics KW - Gait kinetics Y1 - 2016 U6 - https://doi.org/10.1159/000444752 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 597 EP - 603 PB - Karger CY - Basel ER - TY - JOUR A1 - Ben Othman, Aymen A1 - Chaouachi, Anis A1 - Chaouachi, Mehdi A1 - Makhlouf, Issam A1 - Farthing, Jonathan P. A1 - Granacher, Urs A1 - Behm, David George T1 - Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children JF - Applied Physiology, Nutrition, and Metabolism N2 - Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg. KW - resistance training KW - cross-education KW - youth KW - strength KW - power KW - balance Y1 - 2019 U6 - https://doi.org/10.1139/apnm-2018-0766 SN - 1715-5312 SN - 1715-5320 VL - 44 IS - 9 SP - 973 EP - 984 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 303 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96638 SP - 1 EP - 15 ER -