TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 774 KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557567 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Jararnezhadgero, AmirAli A1 - Mamashli, Elaheh A1 - Granacher, Urs T1 - An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: The prevalence of diabetes worldwide is predicted to increase from 2.8% in 2000 to 4.4% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45–65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40–55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001–0.037; d = 0.56–1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001–0.044; d = 0.54–0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 743 KW - oxygen consumption KW - kinetics KW - electromyography KW - diabetic KW - gait Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541182 SN - 1866-8364 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - There is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth. N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 730 KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526912 SN - 1866-8364 IS - 3 ER - TY - GEN A1 - Kümmel, Jakob A1 - Bergmann, Julian A1 - Prieske, Olaf A1 - Kramer, Andreas A1 - Granacher, Urs A1 - Gruber, Markus T1 - Effects of conditioning hops on drop jump and sprint performance BT - a randomized crossover pilot study in elite athletes T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: It has previously been shown that conditioning activities consisting of repetitive hops have the potential to induce better drop jump (DJ) performance in recreationally active individuals. In the present pilot study, we investigated whether repetitive conditioning hops can also increase reactive jump and sprint performance in sprint-trained elite athletes competing at an international level. Methods: Jump and sprint performances of 5 athletes were randomly assessed under 2 conditions. The control condition (CON) comprised 8 DJs and 4 trials of 30-m sprints. The intervention condition (HOP) consisted of 10 maximal repetitive two-legged hops that were conducted 10 s prior to each single DJ and sprint trial. DJ performance was analyzed using a one-dimensional ground reaction force plate. Step length (SL), contact time (CT), and sprint time (ST) during the 30-m sprints were recorded using an opto-electronic measurement system. Results: Following the conditioning activity, DJ height and external DJ peak power were both significantly increased by 11 % compared to the control condition. All other variables did not show any significant differences between HOP and CON. Conclusions: In the present pilot study, we were able to demonstrate large improvements in DJ performance even in sprint-trained elite athletes following a conditioning activity consisting of maximal two-legged repetitive hops. This strengthens the hypothesis that plyometric conditioning exercises can induce performance enhancements in elite athletes that are even greater than those observed in recreationally active athletes.. In addition, it appears that the transfer of these effects to other stretch-shortening cycle activities is limited, as we did not observe any changes in sprint performance following the plyometric conditioning activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 439 KW - post-activation potentiation KW - performance gains KW - reactive movement KW - plyometric exercise Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407236 IS - 439 ER - TY - JOUR A1 - Gebel, Arnd A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Effects and dose-response relationship of balance training on balance performance in Youth BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0926-0 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 9 SP - 2067 EP - 2089 PB - Springer CY - Northcote ER - TY - JOUR A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Cardio-Respiratory Endurance Responses Following a Simulated 3 x 3 Minutes Amateur Boxing Contest in Elite Level Boxers JF - Sports N2 - This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining. KW - aerobic metabolism KW - physiological strain KW - striking combat sports KW - elite athletes Y1 - 2018 U6 - https://doi.org/10.3390/sports6040119 SN - 2075-4663 VL - 6 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fakhri, Ehsan A1 - Granacher, Urs T1 - Effects of nail softness and stiffness with distance running shoes on ground reaction forces and vertical loading rates in male elite long-distance runners with pronated feet JF - BMC sports science, medicine & rehabilitation N2 - Background To improve propulsion during running, athletes often wear spike shoes designed for training and/or competition. Running with spike shoes may cause pain and/or injuries. To address this problem, a modified spike shoe was tested. This study aimed to evaluate the effects of running with dual-versus single-stiffness spike running shoes on running mechanics in long-distance runners with pronated feet. Methods Sixteen male elite (national competitive level) runners (5000 or 10,000 m) aged 28.2 ± 2.5 years with pronated feet volunteered to participate in this study. To be included, participants had to have achieved personal best race times over 5- and/or 10-km races under 17 or 34 min during official running competitions. All participants were heel strikers and had a history of 11.2 ± 4.2 years of training. For the assessment of running kinetics, a force plate was imbedded into a walkway. Running kinematics were recorded using a Vicon-motion-capture system. Nike Zoom Rival shoes (Nike, Nike Zoom Rival, USA) were selected and adapted according to spike softness and stiffness. Participants ran at a constant speed of ~4.0 m/s across the walkway with both shoe conditions in randomized order. Six trials were recorded per condition. The main outcomes included peak ground reaction forces and their time-to-peak, average and instantaneous vertical loading rates, free moments, and peak ankle eversion angles. Results Paired t-tests revealed significantly lower lateral (p = 0.021, d = 0.95) and vertical (p = 0.010, d = 1.40) forces at heel contact during running with dual-stiffness spike shoes. Running with dual-stiffness spike shoes resulted in a significantly longer time-to-peak vertical (p = 0.004, d = 1.40) force at heel contact. The analysis revealed significantly lower average (p = 0.005, d = 0.46) and instantaneous (p = 0.021, d = 0.49) loading rates and peak negative free moment amplitudes (p = 0.016, d = 0.81) when running with dual-stiffness spike shoes. Finally, significantly lower peak ankle eversion angles were observed with dual-stiffness spike shoes (p < 0.001, d = 1.29). Conclusions Running in dual- compared with single-stiffness spike distance running shoes resulted in lower loading rates, free moment amplitudes, and peak ankle eversion angles of long-distance runners with pronated feet. KW - Flat feet KW - Ground reaction force KW - Footwear Y1 - 2021 U6 - https://doi.org/10.1186/s13102-021-00352-7 SN - 2052-1847 VL - 13 SP - 1 EP - 9 PB - BioMed Central CY - London ER - TY - JOUR A1 - Helm, Norman A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Chaabene, Helmi A1 - Granacher, Urs T1 - Validation of a new judo-specific ergometer system in male elite and sub-elite athletes JF - Journal of sports science & medicine N2 - Our experimental approach included two studies to determine discriminative validity and test-retest reliability (study 1) as well as ecological validity (study 2) of a judo ergometer system while performing judo-specific movements. Sixteen elite (age: 23 +/- 3 years) and 11 sub-elite (age: 16 +/- 1 years) athletes participated in study 1 and 14 male sub-elite judo athletes participated in study 2. Discriminative validity and test-retest reliability of sport-specific parameters (mechanical work, maximal force) were assessed during pulling movements with and without tsukuri (kuzushi). Ecological validity of muscle activity was determined by performing pulling movements using the ergometer without tsukuri and during the same movements against an opponent. In both conditions, electromyographic activity of trunk (e.g., m. erector spinae) and upper limb muscles (e.g., m. biceps brachii) were assessed separately for the lifting and pulling arm. Elite athletes showed mostly better mechanical work, maximal force, and power (0.12 <= d <= 1.80) compared with sub-elite athletes. The receiver operating characteristic analysis revealed acceptable validity of the JERGo(C) system to discriminate athletes of different performance levels predominantly during kuzushi without tsukuri (area under the curve = 0.27-0.90). Moreover, small-to-medium discriminative validity was found to detect meaningful performance changes for mechanical work and maximal force. The JERGo(C) system showed small-to-high relative (ICC = 0.37-0.92) and absolute reliability (SEM = 10.8-18.8%). Finally, our analyses revealed acceptable correlations (r = 0.41-0.88) between muscle activity during kuzushi performed with the JERGo(C) system compared with a judo opponent. Our findings indicate that the JERGo(C) system is a valid and reliable test instrument for the assessment and training of judo-specific pulling kinetics particularly during kuzushi movement without tsukuri. KW - Judo-specific pulling movement KW - work KW - force KW - muscle activity KW - reliability Y1 - 2018 SN - 1303-2968 VL - 17 IS - 3 SP - 465 EP - 474 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - GEN A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 297 KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93490 ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Amirzadeh, Nasrin A1 - Fatollahi, Amir A1 - Siahkouhian, Marefat A1 - de Souza Castelo Oliveira, Anderson A1 - Granacher, Urs T1 - Effects of running on sand vs. stable ground on kinetics and muscle activities in individuals with over-pronated feet JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running. Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls. Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed. Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand. Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability. KW - flat feet KW - loading rate KW - lower limb mechanics KW - unstable walkway KW - muscle Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2021.822024 SN - 1664-042X VL - 12 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Fernandez-Fernandez, Jaime A1 - Sammoud, Senda A1 - Bouguezzi, Raja A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Short-term plyometric Jump training improves repeated-sprint ability in prepuberal male soccer players JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - This study examined the effects of a short-term (i.e., 8 weeks) combined horizontal and vertical plyometric jump training (PJT) program in combination with regular soccer-specific training as compared with soccer-specific training only on jump and change of direction (CoD) performances, speed, and repeated-sprint ability (RSA) in prepuberal male soccer players. Twenty-four players were recruited and randomly assigned to either a PJT group (PJT(G); n = 13; 12.7 +/- 0.2 years) or an active control group (CONG; n = 11; 12.7 +/- 0.2 years). The outcome measures included tests for the assessment of jump performance (drop jump from 20- to 40-cm height [DJ20 and DJ40] and 3-hop test [THT]), speed (20-m sprint), CoD (T-test), and RSA (20-m repeated shuttle sprint). Data were analyzed using magnitude-based inferences. Within-group analyses revealed large performance improvements in the T-test (d = -1.2), DJ20 (d = 3.7), DJ40 (d = 3.6), THT (d = 0.6), and the RSA(total) (d = -1.6) in the PJT(G). Between-group analyses showed greater performance improvements in the T-test (d = -2.9), 20-m sprint time (d = -2.0), DJ20 (d = 2.4), DJ40 (d = 2.0), THT (d = 1.9), RSA(best) (d = -1.9), and the RSA(total) (d = -1.9) in the PJT(G) compared with CONG. Eight weeks of an in-season PJT in addition to regular soccer-specific training induced larger increases in measures of physical fitness in prepuberal male soccer players compared with regular soccer-specific training only. More specifically, PJT was effective in improving RSA performance. KW - youth KW - stretch-shortening cycle KW - athletic performance KW - soccer Y1 - 2020 U6 - https://doi.org/10.1519/JSC.0000000000002703 SN - 1064-8011 SN - 1533-4287 VL - 34 IS - 11 SP - 3241 EP - 3249 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Peitz, Matti A1 - Behringer, Michael A1 - Granacher, Urs T1 - A systematic review on the effects of resistance and plyometric training on physical fitness in youth BT - What do comparative studies tell us? JF - PlOS ONE N2 - Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies. KW - young soccer players KW - randomized controlled-trial KW - school baseball players KW - whole-body vibratoin KW - rugby league players KW - of-direction speed KW - endurance performance KW - muscular strength KW - motor-performance Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0205525 SN - 1932-6203 VL - 13 IS - 10 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Fernandez-Fernandez, Jaime A1 - Granacher, Urs A1 - Sanz-Rivas, David A1 - Sarabia Marin, Jose Manuel A1 - Luis Hernandez-Davo, Jose A1 - Moya, Manuel T1 - Sequencing Effects of Neuromuscular Training on Physical Fitness in Youth Elite Tennis Players JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Fernandez-Fernandez, J, Granacher, U, Sanz-Rivas, D, Sarabia Marin, JM, Hernandez-Davo, JL, and Moya, M. Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J Strength Cond Res 32(3): 849-856, 2018-The aim of this study was to analyze the effects of a 5-week neuromuscular training (NMT) implemented before or after a tennis session in prepubertal players on selected components of physical fitness. Sixteen high-level tennis players with a mean age of 12.9 +/- 0.4 years participated in this study, and were assigned to either a training group performing NMT before tennis-specific training (BT; n = 8) or a group that conducted NMT after tennis-specific training (AT; n = 8). Pretest and posttest included: speed (5, 10, and 20 m); modified 5-0-5 agility test; countermovement jump (CMJ); overhead medicine ball throw (MBT); and serve velocity (SV). Results showed that the BT group achieved positive effects from pretest to posttest measures in speed (d = 0.52, 0.32, and 1.08 for 5, 10, and 20 m respectively), 5-0-5 (d = 0.22), CMJ (d = 0.29), MBT (d = 0.51), and SV (d = 0.32), whereas trivial (10 m, 20 m, CMJ, SV, and MBT) or negative effects (d = -0.19 and -0.24 for 5 m and 5-0-5, respectively) were reported for the AT group. The inclusion of an NMT session before the regular tennis training led to positive effects from pretest to posttest measures in performance-related variables (i.e., jump, sprint, change of direction capacity, as well as upper-body power), whereas conducting the same exercise sessions after the regular tennis training was not accompanied by the same improvements. KW - athletic performance KW - intermittent sport KW - plyometrics KW - speed KW - change of direction Y1 - 2018 U6 - https://doi.org/10.1519/JSC.0000000000002319 SN - 1064-8011 SN - 1533-4287 VL - 32 IS - 3 SP - 849 EP - 856 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Singh, Gaurav A1 - Kushwah, Gaurav Singh A1 - Singh, Tanvi A1 - Thapa, Rohit Kumar A1 - Granacher, Urs A1 - Ramirez-Campillo, Rodrigo T1 - Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males JF - Journal of sports science & medicine N2 - This study aimed at examining the effects of nine weeks of sand-based plyometric jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 +/- 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance miming intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 - 0.002, eta(2)(p) = 0.16 - 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges'g effect size [g] = 0.05 - 1.94) and TT (p < 0.001, g = 0.04 - 2.73), but not in the CG (p = 0.058 - 1.000, g = 0.00 - 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment). KW - Muscle strength KW - musculoskeletal and neural physiological phenomena KW - movement KW - resistance training KW - high-intensity interval training KW - exercise Y1 - 2022 U6 - https://doi.org/10.52082/jssm.2022.277 SN - 1303-2968 VL - 21 IS - 2 SP - 277 EP - 286 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Piran Hamlabadi, Milad A1 - Sajedi, Heidar A1 - Granacher, Urs T1 - Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls JF - Gait & posture : official journal of Gait and Clinical Movement Analysis Society, European Society of Movement Analysis in Adults and Children, Società Italiana di Analisi del Movimento in Clinica, International Society for Posture and Gait Research N2 - Background: Social isolation through quarantine represents an effective means to prevent COVID-19 infection. A negative side-effect of quarantine is low physical activity. Research question: What are the differences of running kinetics and muscle activities of recreational runners with a history of COVID-19 versus healthy controls? Methods: Forty men and women aged 20-30 years participated in this study and were divided into two experimental groups. Group 1 (age: 24.1 +/- 2.9) consisted of participants with a history of COVID-19 (COVID group) and group 2 (age: 24.2 +/- 2.7) of healthy age and sex-matched controls (controls). Both groups were tested for their running kinetics using a force plate and electromyographic activities (i.e., tibialis anterior [TA], gastrocnemius medialis [Gas-M], biceps femoris [BF], semitendinosus [ST], vastus lateralis [VL], vastus medialis [VM], rectus femoris [RF], gluteus medius [Glut-M]). Results: Results demonstrated higher peak vertical (p = 0.029; d=0.788) and medial (p = 0.004; d=1.119) ground reaction forces (GRFs) during push-off in COVID individuals compared with controls. Moreover, higher peak lateral GRFs were found during heel contact (p = 0.001; d=1.536) in the COVID group. COVID-19 individuals showed a shorter time-to-reach the peak vertical (p = 0.001; d=3.779) and posterior GRFs (p = 0.005; d=1.099) during heel contact. Moreover, the COVID group showed higher Gas-M (p = 0.007; d=1.109) and lower VM activity (p = 0.026; d=0.811) at heel contact. Significance: Different running kinetics and muscle activities were found in COVID-19 individuals versus healthy controls. Therefore, practitioners and therapists are advised to implement balance and/or strength training to improve lower limbs alignment and mediolateral control during dynamic movements in runners who recovered from COVID-19. KW - Quarantine KW - Ground reaction force KW - Electromyography Y1 - 2022 U6 - https://doi.org/10.1016/j.gaitpost.2021.11.002 SN - 0966-6362 SN - 1879-2219 VL - 91 SP - 260 EP - 265 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wick, Kristin A1 - Kriemler, Susi A1 - Granacher, Urs T1 - Associations between measures of physical fitness and cognitive performance in preschool children JF - BMC sports science, medicine & rehabilitation N2 - Background: Given that recent studies report negative secular declines in physical fitness, associations between fitness and cognition in childhood are strongly discussed. The preschool age is characterized by high neuroplasticity which effects motor skill learning, physical fitness, and cognitive development. The aim of this study was to assess the relation of physical fitness and attention (including its individual dimensions (quantitative, qualitative)) as one domain of cognitive performance in preschool children. We hypothesized that fitness components which need precise coordination compared to simple fitness components are stronger related to attention. Methods: Physical fitness components like static balance (i.e., single-leg stance), muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), and coordination (i.e., hopping on one leg) were assessed in 61 healthy children (mean age 4.5 +/- 0.6 years; girls n = 30). Attention was measured with the "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Analyses were adjusted for age, body height, and body mass. Results: Results from single linear regression analysis revealed a significant (p < 0.05) association between physical fitness (composite score) and attention (composite score) (standardized ss = 0.40), showing a small to medium effect (F-2 = 0.14). Further, coordination had a significant relation with the composite score and the quantitative dimension of attention (standardized ss = 0.35; p < 0.01; standardized ss = - 0.33; p < 0.05). Coordination explained about 11% (composite score) and 9% (quantitative dimension) of the variance in the stepwise multiple regression model. Conclusion: The results indicate that performance in physical fitness, particularly coordination, is related to attention in preschool children. Thus, high performance in complex fitness components (i.e., hopping on one leg) tends to predict attention in preschool children. Further longitudinal studies should focus on the effectiveness of physical activity programs implementing coordination and complex exercises at preschool age to examine cause-effect relationships between physical fitness and attention precisely. KW - Motor skills KW - Cognitive skills KW - Attention KW - Kindergarten Y1 - 2022 U6 - https://doi.org/10.1186/s13102-022-00470-w SN - 2052-1847 VL - 14 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study JF - BMC public health N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. KW - Motor performance KW - Youth KW - Primary school KW - Maturation Y1 - 2014 U6 - https://doi.org/10.1186/1471-2458-14-499 SN - 1471-2458 VL - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Prieske, Olaf A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - The purpose of this study was to assess intrasession and intersession reliability of maximal and explosive isometric torque production of the elbow flexors and its respective neuromuscular activation pattern. Subjects (13 men, age: 24.8 +/- 3.1 years, height: 1.9 +/- 0.1 m, body mass: 83.7 +/- 12.7 kg; and 6 women, age: 26.5 +/- 1.4 years, height: 1.7 +/- 0.1 m, body mass: 62.7 +/- 7.0 kg) were tested and retested 2-7 days later performing unilateral maximal isometric elbow flexions. Absolute (coefficient of variation[CV], test-retest variability[TRV], Bland-Altman plots with 95% limits of agreement) and relative reliability statistics (intraclass correlation coefficient) were calculated for various mechanical (i.e., maximal isometric torque, rate of torque development, impulse) and electromyographical measures (i.e., mean average voltage) at different time intervals relative to onset of torque (i. e., 30, 50, 100, 200, 300, 400, 100-200 ms). Intraclass correlation coefficient values were >= 0.61 for all mechanical and electromyographical measures and time intervals indicating good to excellent intrasession and intersession reliability. BlandAltman plots confirmed these findings by showing that only 0-2 (<= 3.3%) data points were beyond the limits of agreement. Regarding torque and electromyographic measures, CV (11.9-32.3%) and TRV (18.4-53.8%) values were high during the early intervals of torque development (<= 100 ms) indicating high variability. During the later intervals (>100 ms), lower CV (i. e., 5.0-29.9%) and TRV values (i.e., 5.4-34.6%) were observed indicating lower variability. The present study revealed that neuromuscular performance during explosive torque production of the elbow flexors is reproducible in time intervals >100 ms after onset of isometric actions, whereas during earlier time intervals variability is high. KW - maximal isometric contraction KW - explosive force production KW - electromyography KW - test-retest reliability Y1 - 2014 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 6 SP - 1771 EP - 1777 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study JF - PLoS one N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Kibele, A. A1 - Behm, David George A1 - Granacher, Urs T1 - Sex-Specific effects of surface instability on drop jump and landing biomechanics JF - International journal of sports medicine N2 - This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 %, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 %, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 %, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 %, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 %, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 %, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings. KW - stretch-shortening cycle KW - ground reaction force KW - knee joint angle KW - injury risk Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1384549 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 1 SP - 75 EP - 81 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Sammoud, Senda A1 - Negra, Yassine A1 - Bouguezzi, Raja A1 - Hachana, Younes A1 - Granacher, Urs A1 - Chaabene, Helmi T1 - The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers JF - Journal of exercise science and fitness : JESF : official journal of The Society of Chinese Scholars on Exercise Physiology and Fitness and Hong Kong Association of Sports Medicine & Sports Science N2 - Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29–1.63) in favor of PJTG (d = 1.34–3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers. KW - Stretch-shortening cycle KW - Young swimmers KW - Swimming performance Y1 - 2020 U6 - https://doi.org/10.1016/j.jesf.2020.07.003 SN - 1728-869x VL - 19 IS - 1 SP - 25 EP - 31 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Hammami, Raouf A1 - Chaabene, Helmi A1 - Kharrat, Fatma A1 - Werfelli, Hanen A1 - Duncan, Michael A1 - Rebai, Haithem A1 - Granacher, Urs T1 - Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players JF - BMC Sports Science, Medicine and Rehabilitation N2 - Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players. KW - Postural stability KW - Conditioning activity KW - Short‐term effect KW - Team sports KW - Youth Y1 - 2021 U6 - https://doi.org/10.1186/s13102-021-00249-5 SN - 1758-2555 VL - 13 PB - BioMed Central CY - London ER - TY - JOUR A1 - Ramirez-Campillo, Rodrigo A1 - Alvarez, Cristian A1 - Garcia-Hermoso, Antonio A1 - Ramirez-Velez, Robinson A1 - Gentil, Paulo A1 - Asadi, Abbas A1 - Chaabene, Helmi A1 - Moran, Jason A1 - Meylan, Cesar A1 - Garcia-de-Alcaraz, Antonio A1 - Sanchez-Sanchez, Javier A1 - Nakamura, Fabio Y. A1 - Granacher, Urs A1 - Kraemer, William A1 - Izquierdo, Mikel T1 - Methodological characteristics and future directions for plyometric jump training research BT - a scoping review JF - Sports medicine N2 - Recently, there has been a proliferation of published articles on the effect of plyometric jump training, including several review articles and meta-analyses. However, these types of research articles are generally of narrow scope. Furthermore, methodological limitations among studies (e.g., a lack of active/passive control groups) prevent the generalization of results, and these factors need to be addressed by researchers. On that basis, the aims of this scoping review were to (1) characterize the main elements of plyometric jump training studies (e.g., training protocols) and (2) provide future directions for research. From 648 potentially relevant articles, 242 were eligible for inclusion in this review. The main issues identified related to an insufficient number of studies conducted in females, youths, and individual sports (~ 24.0, ~ 37.0, and ~ 12.0% of overall studies, respectively); insufficient reporting of effect size values and training prescription (~ 34.0 and ~ 55.0% of overall studies, respectively); and studies missing an active/passive control group and randomization (~ 40.0 and ~ 20.0% of overall studies, respectively). Furthermore, plyometric jump training was often combined with other training methods and added to participants’ daily training routines (~ 47.0 and ~ 39.0% of overall studies, respectively), thus distorting conclusions on its independent effects. Additionally, most studies lasted no longer than 7 weeks. In future, researchers are advised to conduct plyometric training studies of high methodological quality (e.g., randomized controlled trials). More research is needed in females, youth, and individual sports. Finally, the identification of specific dose-response relationships following plyometric training is needed to specifically tailor intervention programs, particularly in the long term. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0870-z SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 5 SP - 1059 EP - 1081 PB - Springer CY - Northcote ER - TY - JOUR A1 - Prieske, Olaf A1 - Dalager, Tina A1 - Looks, Vanessa A1 - Golle, Kathleen A1 - Granacher, Urs T1 - Physical fitness and psycho-cognitive performance in the young and middle-aged workforce with primarily physical versus mental work demands JF - Journal of public health : from theory to practice : official organ of the Deutscher Verband für Gesundheitswissenschaften Public Health e.V. (DVGPH) N2 - Aim The purpose of this study was to examine physical fitness and psycho-cognitive performance and their associations in young and middle-aged workers with primarily physical versus mental work demands. Subjects and methods Healthy young and middle-aged workers (73 men, age = 33 +/- 7 years; 75 women, age = 35 +/- 9 years) were recruited from German small-to-medium-sized enterprises (< 250 employees) and classified into groups with primarily mental (MD) or physical demands (PD) at work. Participants were tested for cardiorespiratory fitness, trunk flexor/extensor muscular endurance, handgrip strength, balance, leg muscle power, perceived stress, cognitive performance, and work ability. Results Ninety-four workers were allocated to the MD (53% females) and 54 to the PD (46% females) groups. The MD group showed significantly better balance, trunk extensor muscular endurance, and cognitive performance (p < 0.035, 0.35 <= d <= 0.55) and less stress compared with the PD group (p < 0.023, d = 0.38). Group-specific Spearman rank correlation analysis (r(S)) revealed significant small-to-medium-sized correlations between physical fitness and cognitive performance (- 0.205 <= r(S) <= 0.434) in the MD and PD groups. Significant small-to-medium-sized correlations were found for physical fitness and stress/work ability (0.211 <= r(S) <= 0.301) in the MD group only. Further, associations of trunk extensor muscular endurance and work ability were significantly higher in the MD group (r(S) = 0.240) compared with the PD group (r(S) = - 0.141; z = 2.16, p = 0.031). Conclusions MD workers showed better physical fitness measures (balance, trunk extensor muscular endurance) and cognitive performance and lower levels of perceived stress compared with PD workers. Small-to-medium-sized associations between physical fitness and psycho-cognitive performance measures indicate that gains in physical fitness may at least partly contribute to psycho-cognitive performance and/or vice versa, particularly in MD workers. KW - Core strength KW - Endurance KW - Stress KW - Work ability KW - Association Y1 - 2019 U6 - https://doi.org/10.1007/s10389-019-01099-9 SN - 2198-1833 SN - 1613-2238 VL - 29 IS - 1 SP - 75 EP - 84 PB - Springer CY - Berlin ; Heidelberg ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 840 KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431150 SN - 1866-8364 ER - TY - JOUR A1 - Muehlbauer, Thomas A1 - Granacher, Urs A1 - Borde, Ron A1 - Hortobagyi, Tibor T1 - Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults JF - Gerontology N2 - Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass. Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass (LTM) in healthy young (age: 25 years, n = 20) and old (age: 70 years, n = 20) adults. Methods: Subjects were tested for maximal isokinetic hip, knee, and ankle extension torque, leg LTM by bioimpedance, and gait performance (i.e., gait speed, stride length) at preferred and maximal gait speeds. Results: We found no evidence for a preferential relationship between gait performance and leg muscle strength compared with gait performance and leg LTM in healthy young and old adults. In old adults, hip extensor strength only predicted habitual gait speed (R-2 = 0.29, p = 0.015), whereas ankle plantarflexion strength only predicted maximal gait speed and stride length (both R-2 = 0.40, p = 0.003). Conclusions: Gait speed did not preferentially correlate with leg muscle strength or leg LTM, favoring neither outcome for predicting mobility. Thus, we recommend that both leg muscle strength and leg LTM should be tested and trained complementarily. Further, hip and ankle extension torque predicted gait performance, and thus we recommend to test and train healthy old adults by functional integrated multiarticular rather than monoarticular lower extremity strength exercises. KW - Body composition KW - Muscle torque KW - Walking KW - Seniors Y1 - 2017 U6 - https://doi.org/10.1159/000480150 SN - 0304-324X SN - 1423-0003 VL - 64 IS - 1 SP - 11 EP - 18 PB - Karger CY - Basel ER - TY - JOUR A1 - Brahms, Clemens Markus A1 - Hortobágyi, Tibor A1 - Kressig, Reto W. A1 - Granacher, Urs T1 - The Interaction between mobility status and exercise specificity in older adults JF - Exercise and sport sciences reviews N2 - Many adults older than 60 yr experience mobility limitations. Although physical exercise improves older adults' mobility, differences in baseline mobility produce large variations in individual responses to interventions, and these responses could further vary by the type and dose of exercise. Here, we propose an exercise prescription model for older adults based on their current mobility status. KW - exercise prescription KW - training intervention KW - walking speed KW - activities KW - of daily living KW - elderly Y1 - 2021 U6 - https://doi.org/10.1249/JES.0000000000000237 SN - 0091-6331 SN - 1538-3008 VL - 49 IS - 1 SP - 15 EP - 22 PB - Lippincott Williams & Wilkins CY - Hagerstown, Md. ER - TY - JOUR A1 - Prieske, Olaf A1 - Dalager, Tina A1 - Herz, Michael A1 - Hortobagyi, Tibor A1 - Sjogaard, Gisela A1 - Sogaard, Karen A1 - Granacher, Urs T1 - Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis JF - Sports medicine N2 - Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers. Y1 - 2019 U6 - https://doi.org/10.1007/s40279-019-01179-6 SN - 0112-1642 SN - 1179-2035 VL - 49 IS - 12 SP - 1903 EP - 1921 PB - Springer CY - Northcote ER - TY - JOUR A1 - Jararnezhadgero, AmirAli A1 - Mamashli, Elaheh A1 - Granacher, Urs T1 - An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: The prevalence of diabetes worldwide is predicted to increase from 2.8% in 2000 to 4.4% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45–65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40–55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001–0.037; d = 0.56–1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001–0.044; d = 0.54–0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics. KW - oxygen consumption KW - kinetics KW - electromyography KW - diabetic KW - gait Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.654755 SN - 1664-042X VL - 12 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Müller, Steffen A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Effects of surface instability on neuromuscular performance during drop jumps and landings JF - European journal of applied physiology N2 - The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 %, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 %, p = 0.022, f = 0.72), and time for braking phase (12 %, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 %, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 %, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces. KW - Stretch-shortening cycle KW - Trunk muscle strength KW - Jump height KW - Electromyography Y1 - 2013 U6 - https://doi.org/10.1007/s00421-013-2724-6 SN - 1439-6319 SN - 1439-6327 VL - 113 IS - 12 SP - 2943 EP - 2951 PB - Springer CY - New York ER - TY - JOUR A1 - Ahmadi, Hamid A1 - Herat, Nehara A1 - Alizadeh, Shahab A1 - Button, Duane C. A1 - Granacher, Urs A1 - Behm, David G. T1 - Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance JF - PLOS ONE / Public Library of Science N2 - Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1%, Z2p = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, Z2p = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force (Z2p = 0.61, p = 0.0009) during inversion (75%) than upright (65.3%) conditions. Overall, BFR decreased MVC force 4.8% (Z2p = 0.37, p = 0.05). For upright position, BFR induced 21.0% reductions in M-wave amplitude (Z2p = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40-60 s intervals and post-30-s MVC (upright< inversion, and without BFR< BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0245311 SN - 1932-6203 VL - 16 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lesinski, Melanie A1 - Herz, Michael A1 - Schmelcher, Alina A1 - Granacher, Urs T1 - Effects of resistance training on physical fitness in healthy children and adolescents BT - an umbrella review JF - Sports medicine N2 - Background Over the past decades, an exponential growth has occurred with regards to the number of scientific publications including meta-analyses on youth resistance training (RT). Accordingly, it is timely to summarize findings from meta-analyses in the form of an umbrella review. Objectives To systematically review and summarise the findings of published meta-analyses that investigated the effects of RT on physical fitness in children and adolescents. Design Systematic umbrella review of meta-analyses. Data Sources Meta-analyses were identified using systematic literature searches in the databases PubMed, Web of Science, and Cochrane Library. Eligibility Criteria for Selecting Meta-analyses Meta-analyses that examined the effects of RT on physical fitness (e.g., muscle strength, muscle power) in healthy youth (<= 18 years). Results Fourteen meta-analyses were included in this umbrella review. Eleven of these meta-analyses reported between-subject effect sizes which are important to eliminate bias due to growth and maturation. RT produced medium-to-large effects on muscle strength, small-to-large effects on muscle power, small-to-medium effects on linear sprint, a medium effect on agility/change-of-direction speed, small-to-large effects on throwing performance, and a medium effect on sport-specific enhancement. There were few consistent moderating effects of maturation, age, sex, expertise level, or RT type on muscle strength and muscle power across the included meta-analyses. The analysed meta-analyses showed low-to-moderate methodological quality (AMSTAR2) as well as presented evidence of low-to-very low quality (GRADE). Conclusion This umbrella review proved the effectiveness of RT in youth on a high evidence level. The magnitude of effects varies according to the respective outcome measure and it appears to follow the principle of training specificity. Larger effect sizes were found for strength-related outcome measures. Future studies should consistently report data on participants' maturational status. More research is needed with prepubertal children and girls, irrespective of their maturational status. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01327-3 SN - 0112-1642 SN - 1179-2035 VL - 50 IS - 11 SP - 1901 EP - 1928 PB - Springer CY - Northcote ER - TY - JOUR A1 - Helm, Norman A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Granacher, Urs T1 - Effects of judo-specific resistance training on kinetic and electromyographic parameters of pulling exercises in judo athletes T1 - Effekte eines judospezifischen Messplatztrainings auf kinetische und elektromyografische Parameter des Anreißens bei Wurfeingangsbewegungen von Judoka JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background In judo, rapid force production during pulling movements is an important component of athletic performance, which is why this capacity needs to be specifically exercised in judo. This study aimed at examining the effects of a judo-specific resistance training program using a judo ergometer system (PTJ) versus a traditional resistance training regime using a partner (PTP) on kinetics and muscle activity of judo-specific pulling exercises. Method Twenty-four male judo athletes (age: 22 +/- 4 years, training experience: 15 +/- 3 years) were randomly assigned to two groups. In a crossover design, the first group completed a 4-week PTJ followed by four weeks of PTP (each with three sessions per week). The second group conducted PTP prior to PTJ. PTJ and PTP were completed in addition to regular training. Before, 4 weeks and 8 weeks after training, tests were conducted to assess judo-specific pulling kinetics (i.e. maximal force, rate of force development [RFD], mechanical work) and electromyographic (EMG) shoulder/trunk muscle activity (i.e. biceps brachii muscle, deltoid muscle, trapezius muscle, erector spinae muscle) during pulling movements using a judo ergometer as well as unspecific strength tests (i.e. bench-pull, pull-ups). Results The statistical analysis revealed that in both groups ergometer pulling kinetics (p<.05, 0.83 <= d <= 1.77) and EMG activity (p<.05; 1.07 <= d <= 2.25) were significantly enhanced following 8 weeks of training. In addition, significantly larger gains in RFD, mechanical work, and EMG activity (i.e. deltoid muscle, erector spinae muscle, trapezius muscle) were found following PTJ compared to PTP (p<.05, 1.25 <= d <= 2.79). No significant enhancements were observed with the unspecific strength tests. Conclusion Our findings indicate that PTJ is superior to PTP regarding training-induced improvements in force production and muscle activity during judo-specific pulling exercises. Performance enhancements may partly be attributed to neural adaptations. No transfer effects on unspecific strength tests were detected following PTJ and PTP. N2 - Hintergrund Schnellkräftige Wurfeingangsbewegungen stellen im Judo entscheidende Voraussetzungen für den Wettkampferfolg dar, weshalb das Training der Anrissbewegung ein zentrales Element des judospezifischen Trainings darstellt. Das Ziel der Studie bestand darin, die Effekte eines Anrisstrainings mit einem Judoergometer-System (ATJ) gegenüber einem tradierten Anrisstraining mit Partner (ATP) auf kinetische und elektromyografische Parameter des Anreißens bei Wurfeingangsbewegungen von Judoka zu untersuchen. Methode Männliche leistungsorientierte Judoka (N = 24, Alter: 22 ± 4 Jahre; Trainingserfahrung: 15 ± 3 Jahre) wurden randomisiert in zwei Gruppen aufgeteilt. Im Crossover-Design absolvierte die erste Gruppe über vier Wochen ein ATJ gefolgt von vier Wochen ATP (je 3x/ Woche). Die zweite Gruppe führte beide Trainingsvarianten in umgekehrter Reihenfolge durch. ATJ und ATP wurden zusätzlich zum bestehenden Training absolviert. Vor dem Training sowie nach vier und nach acht Wochen Training wurden Tests zur Erfassung kinetischer Parameter (dynamisch-realisierte Maximalkraft, Explosivkraft, mechanische Arbeit) und elektromyografischer (EMG) Schulter-/ Rumpfmuskelaktivitäten (M. biceps brachii, M. deltoideus, M. trapezius, M. erector spinae) für die Hub- und Zugarmseite bei Wurfeingangsbewegungen am Judoergometer sowie sportartunspezifische Krafttests (d. h. Liegend-Anreißen, Klimmziehen) durchgeführt. Ergebnisse Die Ergebnisse der statistischen Analyse ergaben über den gesamten Interventionszeitraum (8 Wochen) für beide Trainingsgruppen signifikante Verbesserungen der kinetischen Parameter (p <,05; 0,83 ≤d≤ 1,77) und EMG-Aktivitäten (p <,05; 1,07 ≤d≤ 2,25). Darüber hinaus zeigten sich größere Zuwachsraten in der Explosivkraft, der mechanischen Arbeit und den Schulter-/Rumpfmuskelaktivitäten (M. deltoideus, M. erector spinae, M. trapezius) zugunsten von ATJ im Vergleich zu ATP (p <,05; 1,25 ≤d≤ 2,79). Für die sportartunspezifischen Kraftwerte wurden keine signifikanten Veränderungen festgestellt. Schlussfolgerung Die vorliegenden Ergebnisse zeigen, dass ATJ gegenüber ATP größere Steigerungsraten von kinetischen und elektromyografischen Parametern des Anreißens bei Wurfeingangsbewegungen von Judoka bewirkt. Die trainingsbedingten Leistungssteigerungen scheinen zumindest teilweise auf neuronalen Anpassungen zu beruhen. KW - combat sport KW - athletic performance KW - specific strength training KW - surface electromyography KW - Kampfsport KW - sportliche Leistung KW - spezifisches Krafttraining KW - Oberflächenelektromyografie Y1 - 2018 U6 - https://doi.org/10.1055/s-0043-122781 SN - 0932-0555 SN - 1439-1236 VL - 32 IS - 2 SP - 134 EP - 142 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Gäbler, Martijn A1 - Berberyan, Hermine S. A1 - Prieske, Olaf A1 - Elferink-Gemser, Marije Titia A1 - Hortobagyi, Tibor A1 - Warnke, Torsten A1 - Granacher, Urs T1 - Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose: The aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists. Methods: Semi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance. Results: Between- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes. Conclusion: Young sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power). T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 744 KW - youth sports KW - water sports KW - exercise test KW - athletic performance KW - anthropometry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-542283 SN - 1866-8364 SP - 1 EP - 10 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Peitz, Matti A1 - Behringer, Michael A1 - Granacher, Urs T1 - A systematic review on the effects of resistance and plyometric training on physical fitness in youth BT - What do comparative studies tell us? T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 498 KW - young soccer players KW - randomized controlled-trial KW - school baseball players KW - whole-body vibratoin KW - rugby league players KW - of-direction speed KW - endurance performance KW - muscular strength KW - motor-performance Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422201 SN - 1866-8364 IS - 498 ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Besemer, Carmen A1 - Wehrle, Anja A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Relationship between strength, power and balance performance in seniors JF - Gerontology N2 - Background: Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. Objective: The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Methods: Twenty-four healthy and physically active older adults (mean age: 70 8 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Results: Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). Conclusion: The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. KW - Steady-state balance KW - Proactive/reactive balance KW - Force production KW - Single/dual tasking KW - Cognitive/motor interference Y1 - 2012 U6 - https://doi.org/10.1159/000341614 SN - 0304-324X VL - 58 IS - 6 SP - 504 EP - 512 PB - Karger CY - Basel ER - TY - JOUR A1 - Grabow, Lena A1 - Young, James D. A1 - Alcock, Lynsey R. A1 - Quigley, Patrick J. A1 - Byrne, Jeannette M. A1 - Granacher, Urs A1 - Skarabot, Jakob A1 - Behm, David George T1 - Higher Quadriceps Roller Massage Forces Do Not Amplify Range-of-Motion Increases nor Impair Strength and Jump Performance JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Grabow, L, Young, JD, Alcock, LR, Quigley, PJ, Byrne, JM, Granacher, U, Škarabot, J, and Behm, DG. Higher quadriceps roller massage forces do not amplify range-of-motion increases nor impair strength and jump performance. J Strength Cond Res 32(11): 3059–3069, 2018—Roller massage (RM) has been reported to increase range of motion (ROM) without subsequent performance decrements. However, the effects of different rolling forces have not been examined. The purpose of this study was to compare the effects of sham (RMsham), moderate (RMmod), and high (RMhigh) RM forces, calculated relative to the individuals' pain perception, on ROM, strength, and jump parameters. Sixteen healthy individuals (27 ± 4 years) participated in this study. The intervention involved three 60-second quadriceps RM bouts with RMlow (3.9/10 ± 0.64 rating of perceived pain [RPP]), RMmod (6.2/10 ± 0.64 RPP), and RMhigh (8.2/10 ± 0.44 RPP) pain conditions, respectively. A within-subject design was used to assess dependent variables (active and passive knee flexion ROM, single-leg drop jump [DJ] height, DJ contact time, DJ performance index, maximum voluntary isometric contraction [MVIC] force, and force produced in the first 200 milliseconds [F200] of the knee extensors and flexors). A 2-way repeated measures analysis of variance showed a main effect of testing time in active (p < 0.001, d = 2.54) and passive (p < 0.001, d = 3.22) ROM. Independent of the RM forces, active and passive ROM increased by 7.0% (p = 0.03, d = 2.25) and 15.4% (p < 0.001, d = 3.73) from premeasure to postmeasure, respectively. Drop jump and MVIC parameters were unaffected from pretest to posttest (p > 0.05, d = 0.33–0.84). Roller massage can be efficiently used to increase ROM without substantial pain and without subsequent performance impairments. KW - self-massage therapy KW - neuromuscular rolling KW - pressure KW - self-myofascial release Y1 - 2018 U6 - https://doi.org/10.1519/JSC.0000000000001906 SN - 1064-8011 SN - 1533-4287 VL - 32 IS - 11 SP - 3059 EP - 3069 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Prieske, Olaf A1 - Chaabene, Helmi A1 - Gäbler, Martijn A1 - Herz, Michael A1 - Helm, Norman A1 - Markov, Adrian A1 - Granacher, Urs T1 - Seasonal changes in anthropometry, body composition, and physical fitness and the relationships with sporting success in young sub-elite judo athletes BT - an exploratory study JF - International journal of environmental research and public health : IJERPH N2 - This exploratory study aimed to monitor long-term seasonal developments in measures of anthropometry, body composition, and physical fitness in young judo athletes, and to compute associations between these measures and sporting success. Forty-four young judoka (20 females, 24 males) volunteered to participate. Tests for the assessment of anthropometry (e.g., body height/mass), body-composition (e.g., lean body mass), muscle strength (isometric handgrip strength), vertical jumping (e.g., countermovement-jump (CMJ) height), and dynamic balance (Y-balance test) were conducted at the beginning and end of a 10-month training season. Additionally, sporting success at the end of the season was recorded for each athlete. Analyses revealed significant time x sex interaction effects for lean-body-mass, isometric handgrip strength, and CMJ height (0.7 <= d <= 1.6). Post-hoc analyses showed larger gains for all measures in young males (1.9 <= d <= 6.0) compared with females (d = 2.4) across the season. Additionally, significant increases in body height and mass as well as Y-balance test scores were found from pre-to-post-test (1.2 <= d <= 4.3), irrespective of sex. Further, non-significant small-to-moderate-sized correlations were identified between changes in anthropometry/body composition/physical fitness and sporting success (p > 0.05; -0.34 <= rho <= 0.32). Regression analysis confirmed that no model significantly predicted sporting success. Ten months of judo training and/or growth/maturation contributed to significant changes in anthropometry, body composition, and physical fitness, particularly in young male judo athletes. KW - combat sports KW - periodization KW - somatic variables KW - training load KW - training KW - monitoring KW - young athletes Y1 - 2020 U6 - https://doi.org/10.3390/ijerph17197169 SN - 1660-4601 VL - 17 IS - 19 PB - MDPI AG CY - Basel ER - TY - JOUR A1 - Granacher, Urs A1 - Prieske, Olaf A1 - Majewski, M. A1 - Büsch, Dirk A1 - Mühlbauer, Thomas T1 - The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players JF - International journal of sports medicine N2 - The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance. KW - strength KW - jump KW - speed KW - agility KW - balance Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1395519 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 5 SP - 386 EP - 394 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Stürchler, M. A1 - Granacher, Urs T1 - Effects of climbing on core strength and mobility in adults JF - International journal of sports medicine N2 - The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30+/-3 years) or a control (29+/-2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (similar to 19-22 %, all p<0.01), in trunk mobility in SAP/CRP (similar to 14-19 %, all p<0.01), and in handgrip strength (similar to 5 %, p<0.01). During detraining, MIS (similar to 12-13 %, all p<0.01) and trunk mobility (similar to 7-10%, all p<0.01) deteriorated significantly, whereas handgrip strength remained. This indoor climbing training program conducted in sedentary adults proved to be feasible (i.e., attendance rate of 89.4%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility. KW - intervention KW - detraining KW - young adults KW - sedentary Y1 - 2012 U6 - https://doi.org/10.1055/s-0031-1301312 SN - 0172-4622 VL - 33 IS - 6 SP - 445 EP - 451 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Sex-related effects in strength training during adolescence a pilot study JF - Perceptual & motor skills N2 - The objective was to investigate the effects of high-velocity strength training on isometric strength of the leg extensors and jump height in female and male adolescents. Twenty-eight students (13 boys, 15 girls) ages 16 to 17 years participated in this study and were assigned to either a strength training group or a control group. Strength training was conducted over 8 weeks (2 times per week). Pre- and post-training tests included the measurements of maximal isometric force and rate of force development of the leg extensors as well as countermovement jump height. Both girls (effect size = 1.37) and boys (effect size = 0.61) showed significant improvements in jump height. However, significant increases in maximal isometric force (effect size = 1.85) and rate of force development (effect size = 2.23) were found only in girls. In female and male adolescents, high-velocity strength training is an effective training regimen that produced improvements in countermovement jump height in both sexes but higher gains in maximal isometric force and rate of force development in girls. Y1 - 2012 U6 - https://doi.org/10.2466/06.10.30.PMS.115.6.953-968 SN - 0031-5125 VL - 115 IS - 3 SP - 953 EP - 968 PB - Sage Publ. CY - Missoula ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Kühnen, Matthias A1 - Granacher, Urs T1 - Inline skating for balance and strength promotion in children during physical education JF - Perceptual & motor skills N2 - Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength. Y1 - 2013 U6 - https://doi.org/10.2466/30.06.PMS.117x29z9 SN - 0031-5125 VL - 117 IS - 3 SP - 665 EP - 681 PB - Sage Publ. CY - Missoula ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Negra, Yassine A1 - Granacher, Urs T1 - Change of direction speed BT - toward a strength training approach with accentuated eccentric muscle actions JF - Sports medicine N2 - There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate-to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small-to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to enhance sport-specific performance. Future comparative studies are needed to deepen our knowledge of the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0907-3 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 8 SP - 1773 EP - 1779 PB - Springer CY - Northcote ER - TY - JOUR A1 - Helm, Norman A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Retzlaff, Matthias A1 - Granacher, Urs T1 - Associations between trunk muscle strength and judo-specific pulling performances in judo athletes T1 - Assoziationen zwischen der Rumpfkraft und judospezifischen Anriss-Leistungen von Judoka JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Good trunk stability is an important prerequisite for the mobility of the upper and lower limbs during sport-specific movements. Therefore, trunk muscle strength may represent an important performance determinant for judo-specific movements. This study aimed at evaluating statistical correlations between trunk muscle strength and kinetic parameters during judo-specific pulling movements in judo players. Method: Twenty-one male sub-elite judo players aged 22 +/- 4 years with a mean training volume of 15 +/- 4 hours per week participated in this study. Peak isokinetic torque (PIT) of the trunk flexors (PITFlex), extensors (PITEx) and rotators (PITRot) was tested using an isokinetic dynamometer (IsoMed 2000). In addition, two kinetic parameters (mechanical work [W], maximal force [F-max]) were analysed using the judo-specific measurement and information system JERGo (c). For this purpose, athletes were asked to do their judo-specific pulling movements while standing and with a dynamic change of position (i.e. Morote-seoi-nage). Results: Regarding pulling movements while standing, significant correlations (0.62 <= r(P) <= 0.72) were found between isokinetic tests (PITFlex, PITEx, PITRot) and mechanical work during judo-specific movement. Further, significant correlations (0.59 <= r(P) <= 0.65) were detected between isokinetic tests (PITEx, PITRot) and judo-specific pulling movements (Fmax). Regarding pulling movements with a change of position, significant correlations (0.47 <= r(P) <= 0.88) were observed between isokinetics (PITFlex, PITEx, PITRot) and the kinetic pulling parameters (W, Fmax), irrespective of the examined arm. No significant differences in magnitude of correlation coefficients were found between PIT of the trunk flexors, extensors, and rotators and judo-specific movements. Further, the regression analysis indicated that PIT of the trunk extensors is the single best predictor for mechanical work during pulling movements while standing (46.9 %). Trunk rotator PIT is the single best predictor for mechanical work during pulling movements with a change of position (69.4 %). Conclusions: Findings from this study indicate that trunk muscle strength, particularly trunk rotator PIT is associated with kinetic pulling variables during pulling movements with a change of position. This implies that the development of trunk rotator strength could have an impact on pulling movements with a change of position (i.e. Morote-seoi-nage) in judo athletes. N2 - Hintergrund: Eine gut ausgeprägte Rumpfstabilität ist eine wichtige Voraussetzung für die Mobilität der oberen und unteren Extremitäten während des sportlichen Bewegungsvollzugs. Vor diesem Hintergrund könnte die Rumpfkraft ein leistungsdeterminierender Faktor bei der Ausführung judospezifischer Bewegungen darstellen. Das Ziel der vorliegenden Studie war es, statistische Zusammenhänge zwischen der Rumpfkraft und kinetischen Parametern bei Anriss-Bewegungen von Judoka zu untersuchen. Methode: An der Untersuchung nahmen 21 leistungsorientierte Judoka mit einem mittleren Alter von 22 ± 4 Jahre und einem Trainingsumfang von 15 ± 4 Stunden pro Woche teil. Das maximale isokinetische Drehmoment (PIT) der Rumpfflexoren (PITFlex), -extensoren (PITEx) und -rotatoren (PITRot) wurde unter Verwendung eines isokinetischen Dynamometers (IsoMed 2000) erfasst. Zusätzlich wurden kinetische Parameter (mechanische Arbeit [W], dynamisch-realisierte Maximalkraft [Fmax]) bei Anriss-Bewegung im Stand und bei Anriss- mit Eindrehbewegung (d. h. Morote-seoi-nage) mithilfe eines judospezifischen Mess- und Informationssystems (JERGo©) erhoben. Ergebnisse: Die statistische Analyse zeigte signifikante Korrelationen (0,62 ≤ r P ≤ 0,72) zwischen den maximalen isokinetischen Drehmomenten (PITFlex, PITEx, PITRot) und der Anriss-Bewegung im Stand (W). Zudem konnten signifikante Zusammenhänge (0,59 ≤ r P ≤ 0,65) zwischen den isokinetischen Tests (PITEx, PITRot) und Fmax auf der Hubarmseite bei der Anriss-Bewegung im Stand gefunden werden. Für die Anriss- mit Eindrehbewegung ergaben sich signifikante Korrelationen (0,47 ≤ r P ≤ 0,88) zwischen den isokinetischen Tests (PITFlex, PITEx, PITRot) und Leistungskennwerten der judospezifischen Bewegung (W und Fmax), unabhängig von der untersuchten Armseite. Es wurden vergleichbare Korrelationskoeffizienten zwischen PIT der Rumpfflexoren, -extensoren und -rotatoren und judospezifischen Leistungskennwerten festgestellt. Weiterhin identifizierte die Regressionsanalyse den Kennwert PIT bei Rumpfextension als besten Prädiktor für die mechanische Arbeit bei Anriss-Bewegung im Stand (46,9 %). Bei der Anriss- mit Eindrehbewegung konnte PIT der Rumpfrotatoren auf die Hubarmseite als bester Prädiktor für die mechanische Arbeit (69,4 %) ermittelt werden. Schlussfolgerung: Die Ergebnisse zeigen, dass die Rumpfkraft, insbesondere bei der Rumpfrotationsbewegung, mit Variablen der judospezifischen Leistungskennwerte bei der Anriss- mit Eindrehbewegung assoziiert ist. Dies impliziert, dass vor allem durch rumpfrotationskräftigende Übungen Einfluss auf die Anriss- mit Eindrehbewegung (d. h. Morote-seoi-nage) genommen werden könnte. KW - combat sport KW - athletic performance KW - Morote-seoi-nage KW - Kampfsport KW - sportliche Leistung Y1 - 2020 U6 - https://doi.org/10.1055/a-0677-9608 SN - 0932-0555 SN - 1439-1236 VL - 34 IS - 1 SP - 18 EP - 27 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Moran, Jason A1 - Ramirez-Campillo, Rodrigo A1 - Granacher, Urs T1 - Effects of Jumping Exercise on Muscular Power in Older Adults BT - a Meta-Analysis JF - Sports medicine N2 - Background Jump training (JT) can be used to enhance the ability of skeletal muscle to exert maximal force in as short a time as possible. Despite its usefulness as a method of performance enhancement in athletes, only a small number of studies have investigated its effects on muscle power in older adults. Objectives The aims of this meta-analysis were to measure the effect of JT on muscular power in older adults (≥ 50 years), and to establish appropriate programming guidelines for this population. Data Sources The data sources utilised were Google Scholar, PubMed, and Microsoft Academic. Study Eligibility Criteria Studies were eligible for inclusion if they comprised JT interventions in healthy adults (≥ 50 years) who were free of any medical condition that could impair movement. Study Appraisal and Synthesis Methods The inverse variance random-effects model for meta-analyses was used because it allocates a proportionate weight to trials based on the size of their individual standard errors and facilitates analysis while accounting for heterogeneity across studies. Effect sizes (ESs), calculated from a measure of muscular power, were represented by the standardised mean difference and were presented alongside 95% confidence intervals (CIs). Results Thirteen training groups across nine studies were included in this meta-analysis. The magnitude of the main effect was ‘moderate’ (0.66, 95% CI 0.33, 0.98). ESs were larger in non-obese participants (body mass index [BMI] < 30 vs. ≥ 30 kg/m2; 1.03 [95% CI 0.34, 1.73] vs. 0.53 [95% CI − 0.03, 1.09]). Among the studies included in this review, just one reported an acute injury, which did not result in the participant ceasing their involvement. JT was more effective in programmes with more than one exercise (range 1–4 exercises; ES = 0.74 [95% CI − 0.49, 1.96] vs. 0.53 [95% CI 0.29, 0.78]), more than two sets per exercise (range 1–4 sets; ES = 0.91 [95% CI 0.04, 1.77] vs. 0.68 [95% CI 0.15, 1.21]), more than three jumps per set (range 1–14 jumps; ES = 1.02 [95% CI 0.16, 1.87] vs. 0.53 [95% CI − 0.03, 1.09]) and more than 25 jumps per session (range 6–200 jumps; ES = 0.88 [95% CI 0.05, 1.70] vs. 0.49 [95% CI 0.14, 0.83]). Conclusions JT is safe and effective in older adults. Practitioners should construct varied JT programmes that include more than one exercise and comprise more than two sets per exercise, more than three jumps per set, and 60 s of recovery between sets. An upper limit of three sets per exercise and ten jumps per set is recommended. Up to three training sessions per week can be performed. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-1002-5 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 12 SP - 2843 EP - 2857 PB - Springer CY - Northcote ER - TY - JOUR A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden JF - Sports Orthopaedics and Traumatology N2 - Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 VL - 36 IS - 3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Granacher, Urs A1 - Gruber, Markus A1 - Gollhofer, Albert T1 - Resistance training and neuromuscular performance in seniors N2 - Age-related processes in the neuromuscular and the somatosensory system are responsible for decreases in maximal and explosive force production capacity and deficits in postural control. Thus, the objectives of this study were to investigate the effects of resistance training on strength performance and on postural control in seniors. Forty healthy seniors (67 +/- 1 yrs) participated in this study. Subjects were randomly assigned to a resistance training (n = 20) and a control group (n = 20). Resistance training for the lower extremities lasted for 13 weeks at 80% of the one repetition maximum. Pre and post tests included the measurement of maximal isometric leg extension force with special emphasis on the early part of the force-time-curve and the assessment of static (functional reach test) and dynamic (tandem walk test, platform perturbation) postural control. Resistance training resulted I in an enhanced strength performance with increases I in explosive force exceeding those in maximal strength. Improved performances in the functional reach and in the tandem walk test were observed. Resistance training did not have an effect: on the compensation of platform perturbations. Increases in strength performance can primarily be explained by an improved neural drive of the agonist muscles. The inconsistent effect of resistance training on postural control may be explained by heterogeneity of testing methodology or by the incapability of isolated resisiance training to improve postural control. Y1 - 2009 UR - http://www.thieme-connect.de/ejournals/toc/sportsmed U6 - https://doi.org/10.1055/s-0029-1224178 SN - 0172-4622 ER - TY - JOUR A1 - Haile, Sarah R. A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Stocker, Julien A1 - Radtke, Thomas A1 - Kriemler, Susi T1 - Reference values and validation of the 1-minute sit-to-stand test in healthy 5-16-year-old youth BT - a cross-sectional study JF - BMJ open N2 - Objectives: It is essential to have simple, reliable and valid tests to measure children's functional capacity in schools or medical practice. The 1-minute sit-to-stand (STS) test is a quick fitness test requiring little equipment or space that is increasingly used in both healthy populations and those with chronic disease. We aimed to provide age-specific and sex-specific reference values of STS test in healthy children and adolescents and to evaluate its short-term reliability and construct validity. Design setting and participants: Cross-sectional convenience sample from six public schools and one science fair in central Europe. Overall, 587 healthy participants aged 5-16 years were recruited and divided into age groups of 3 years each. Outcomes: 1-minute STS. To evaluate short-term reliability, some children performed the STS test twice. To evaluate construct validity, some children also performed a standing long jump (SLJ) and a maximal incremental exercise test. Results: Data from 547 youth aged 5-16 years were finally included in the analyses. The median number of repetitions in 1 min in males (females) ranged from 55 [95% CI: 38 to 72] (53 [95% CI: 35 to 76]) in 14-16-year olds to 59 [95% CI: 41 to 77] (60 [95% CI: 38 to 77]) in 8-10-year olds. Children who repeated STS showed a learning effect of on average 4.8 repetitions more than the first test (95% limits of agreement: -6.7 to 16.4). Moderate correlations were observed between the STS and the SLJ (r=0.48) tests and the maximal exercise test (r=0.43). Conclusions: The reported STS reference values can be used to interpret STS test performance in children and adolescents. The STS appears to have good test- retest reliability, but a learning effect of about 10%. The association of STS with other measures of physical fitness should be further explored in a larger study and technical standards for its conduct are needed. Y1 - 2021 U6 - https://doi.org/10.1136/bmjopen-2021-049143 SN - 2044-6055 VL - 11 IS - 5 PB - BMJ Publishing Group CY - London ER - TY - JOUR A1 - Jafarnezhadgero, AmirAli A1 - Ghorbanloo, Farshad A1 - Fatollahi, Amir A1 - Dionisio, Valdeci Carlos A1 - Granacher, Urs T1 - Effects of an elastic resistance band exercise program on kinetics and muscle activities during walking in young adults with genu valgus BT - A double-blinded randomized controlled trial JF - Clinical biomechanics : a journal affiliated to the International Society of Biomechanics and the American Society of Biomechanics N2 - Background: This double-blinded randomized-controlled-trial aimed to identify the effects of an elastic band resistance training on walking kinetics and muscle activities in young adults with genu valgus. Methods: Forty-two male young adults aged 22.5(2.7) years with genu valgus were randomly allocated to two experimental groups. The intervention group (n = 21) conducted a 14-weeks elastic band resistance training. The control group was passive during the intervention period and received the same treatment after the post-tests. Pre and post training, ground reaction forces and lower limb muscle activities were recorded during walking. Findings: Results revealed significant group-by-time interactions for peak medial ground reaction force and timeto-peak for posterior ground reaction force in favor of the intervention group (p < 0.012; d = 0.83-3.76). Resistance training with elastic bands resulted in significantly larger peak medial ground reaction force (p < 0.001; d = 1.45) and longer time-to-peak for posterior ground reaction force (p < 0.001; d = 1.85). Finding showed significant group-by-time interactions for peak positive free moment amplitudes in favor of the intervention group (p < 0.001; d = 1.18-2.02). Resistance training resulted in a lower peak positive free moment amplitude (p = 0.001; d = 1.46). With regards to muscle activities, the analysis revealed significant group-by time interactions for rectus femoris and gluteus medius activities during the push-off phase in favor of the intervention group (p < 0.038; d = 0.68-0.89). Resistance training induced higher rectus femoris (p = 0.038; d = 0.84) and gluteus medius (p = 0.007; d = 0.54) activities. Interpretation: This study proved the effectiveness of resistance training using elastic bands on kinetics and muscle activities during walking in male adults with genu valgus disorder. Given that this training regime is low cost, effective, and easy-to-administer, we suggest that it should be implemented as a rehabilitative or preventive means for young adults with genu valgus. KW - Free moment KW - Gait KW - Knee valgus KW - Loading rate KW - Theraband training Y1 - 2021 U6 - https://doi.org/10.1016/j.clinbiomech.2020.105215 SN - 0268-0033 SN - 1879-1271 VL - 81 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wick, Kristin A1 - Kriemler, Susi A1 - Granacher, Urs T1 - Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Wick, K, Kriemler, S, and Granacher, U. Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children. J Strength Cond Res 35(4): 983-990, 2021-Childhood is characterized by high neuroplasticity that affords qualitative rather than quantitative components of physical activity to maximize the potential to sufficiently develop motor skills and foster long-term engagement in regular physical activity. This study examined the effects of an integrative strength-dominated exercise program on measures of physical fitness and cognitive performance in preschool children. Children aged 4-6 years from 3 kindergartens were randomized into an intervention (INT) group (n = 32) or a control group (n = 22). The 10-week intervention period was conducted 3 times per week (each session lasted 30 minutes) and included exercises for the promotion of muscle strength and power, coordination, and balance. Pre and post training, tests were conducted for the assessment of muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), balance (i.e., timed single-leg stand), coordination (hopping on right/left leg), and attentional span (i.e., "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Results from 2 x 2 repeated-measures analysis of covariance revealed a significant (p <= 0.05) and near significant (p = 0.051) group x time interaction for the standing long jump test and the Konzentrations-Handlungsverfahren. Post hoc tests showed significant pre-post changes for the INT (p < 0.001; d = 1.53) but not the CON (p = 0.72; d = 0.83). Our results indicate that a 10-week strength-dominated exercise program increased jump performance with a concomitant trend toward improvements in attentional capacity of preschool children. Thus, we recommend implementing this type of exercise program for preschoolers. KW - motor skills KW - cognitive skills KW - attention KW - kindergarten KW - structured KW - physical activity program Y1 - 2021 U6 - https://doi.org/10.1519/JSC.0000000000003942 SN - 1064-8011 SN - 1533-4287 VL - 35 IS - 4 SP - 983 EP - 990 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Chaouachi, Mehdi A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Hammami, Raouf A1 - Behm, David G. A1 - Chaouachi, Anis T1 - Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes JF - Journal of sports science & medicine N2 - The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players ( 13.9 +/- 0.3 years) participated in an 8-week training program that either alternated individual balance (e. g., exercises on unstable surfaces) and plyometric (e. g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately > 30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. KW - Power KW - strength KW - jumps KW - sprints KW - balance KW - children Y1 - 2017 SN - 1303-2968 VL - 16 SP - 125 EP - 136 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - BOOK A1 - Mühlbauer, Thomas A1 - Roth, Ralf A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs ED - Kröger, Christian ED - Roth, Klaus ED - Haag, Herbert T1 - Krafttraining mit Kindern und Jugendlichen BT - theoretische Grundlagen und praktische Umsetzung T3 - Praxisideen N2 - Dieser Band beschäftigt sich mit den theoretischen Grundlagen und der praktischen Umsetzung von Krafttraining mit Kindern und Jugendlichen. Ausgehend von der Kennzeichnung der körperlichen Situation und der Kraftentwicklung im Kindes- und Jugendalter werden die Effekte von Krafttraining bei Kindern und Jugendlichen aufgezeigt. Hierzu zählen neben Verbesserungen der Kraftausdauer, der Maximal- und Schnellkraft, die Förderung elementarer und sportartspezifischer Fertigkeiten sowie die günstige Beeinflussung gesundheitsrelevanter Faktoren (u.a. Verletzungshäufigkeit, Knochenstatus, kardio-vaskuläre und psycho-soziale Kennwerte). Im Anschluss werden neuronale und muskuläre Mechanismen zur Erklärung der trainingsbedingten Anpassungen beschrieben. Das Kernstück des Buches bildet die Darstellung und Beschreibung vielfältiger Übungsbeispiele für ein Krafttraining an Maschinen, mit Freihanteln, Zusatzgeräten, dem eigenen Körpergewicht und ein Sprungkrafttraining. Hierbei wurden insbesondere Übungen ausgewählt, die sich für den Einsatz im Schul- und Vereinssport eignen. Dieses Buch dient somit Lehrern, Übungsleitern und Trainern, ein zielgerichtetes Krafttraining mit Kindern und Jugendlichen wirkungsvoll und sicher durchzuführen. Y1 - 2013 SN - 978-3-7780-2581-9 IS - 58 PB - Hofmann CY - Schorndorf ER - TY - JOUR A1 - Prieske, Olaf A1 - Aboodarda, Saied J. A1 - Sierra, Jose A. Benitez A1 - Behm, David G. A1 - Granacher, Urs T1 - Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output JF - European journal of applied physiology N2 - The purpose of the present study was to examine the effects of unilateral fatigue of the knee extensors at different movement velocities on neuromuscular performance in the fatigued and non-fatigued leg. Unilateral fatigue of the knee extensors was induced in 11 healthy young men (23.7 +/- 3.8 years) at slower (60A degrees/s; FAT60) and faster movement velocities (240A degrees/s; FAT240) using an isokinetic dynamometer. A resting control (CON) condition was included. The fatigue protocols consisted of five sets of 15 maximal concentric knee extensions using the dominant leg. Before and after fatigue, peak isokinetic torque (PIT) and time to PIT (TTP) of the knee extensors as well as electromyographic (EMG) activity of vastus medialis, vastus lateralis, and biceps femoris muscles were assessed at 60 and 240A degrees/s movement velocities in the fatigued and non-fatigued leg. In the fatigued leg, significantly greater PIT decrements were observed following FAT60 and FAT240 (11-19%) compared to CON (3-4%, p = .002, d = 2.3). Further, EMG activity increased in vastus lateralis and biceps femoris muscle following FAT240 only (8-28%, 0.018 <= p <=.024, d = 1.8). In the non-fatigued leg, shorter TTP values were found after the FAT60 protocol (11-15%, p = .023, d = 2.4). No significant changes were found for EMG data in the non-fatigued leg. The present study revealed that both slower and faster velocity fatiguing contractions failed to show any evidence of cross-over fatigue on PIT. However, unilateral knee extensor fatigue protocols conducted at slower movement velocities (i.e., 60A degrees/s) appear to modulate torque production on the non-fatigued side (evident in shorter TTP values). KW - Electromyography KW - Cross-over fatigue KW - Isokinetic KW - Movement velocity KW - Motor function KW - Central activation Y1 - 2017 U6 - https://doi.org/10.1007/s00421-016-3524-6 SN - 1439-6319 SN - 1439-6327 VL - 117 SP - 323 EP - 334 PB - Springer CY - New York ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Granacher, Urs T1 - Eight weeks of exercising on sand has positive effects on biomechanics of walking and muscle activities in individuals with pronated feet BT - a randomized double-blinded controlled trial JF - Sports : open access journal N2 - This study aimed to investigate the effects of eight weeks of barefoot running exercise on sand versus control on measures of walking kinetics and muscle activities in individuals with diagnosed pronated feet. Sixty physically active male adults with pronated feet were randomly allocated into an intervention or a waiting control group. The intervention group conducted an 8-weeks progressive barefoot running exercise program on sand (e.g., short sprints) with three weekly sessions. Pre and post intervention, participants walked at a constant speed of 1.3 m/s +/- 5% on a 18 m walkway with a force plate embedded in the middle of the walkway. Results showed significant group-by-time interactions for peak impact vertical and lateral ground reaction forces. Training but not control resulted in significantly lower peak impact vertical and lateral ground reaction forces. Significant group-by-time interactions were observed for vastus lateralis activity during the loading phase. Training-induced increases were found for the vastus lateralis in the intervention but not in the control group. This study revealed that the applied exercise program is a suitable means to absorb ground reaction forces (e.g., lower impact vertical and lateral peaks) and increase activities of selected lower limb muscles (e.g., vastus lateralis) when walking on stable ground. KW - flat foot KW - free moment KW - gait KW - loading rate KW - training Y1 - 2022 U6 - https://doi.org/10.3390/sports10050070 SN - 2075-4663 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Sammoud, Senda A1 - Bouguezzi, Raja A1 - Abbes, Mohamed Aymen A1 - Hachana, Younes A1 - Granacher, Urs T1 - Effects of Plyometric Training on Physical Fitness in Prepuberal Soccer Athletes JF - International journal of sports medicine N2 - This study aimed at examining the effects of plyometric training on stable (SPT) vs. unstable (UPT) surfaces on physical fitness in prepuberal soccer players. Male athletes were randomly assigned to SPT (n = 18; age = 12.7 +/- 0.2 years) or UPT (n = 16; age = 12.2 +/- 0.5 years). Both groups conducted 3 regular soccer training sessions per week combined with either 2 SPT or UPT sessions. Assessment of jumping ability (countermovement jump [CMJ], and standing long jump [SLJ]), speed (10-m, 20-m, 30-m sprint), agility (Illinois agility test [IAT]), and balance (stable [SSBT], unstable [USBT] stork balance test; stable [SYBT], unstable [UYBT] Y balance test) was conducted pre-and post-training. An ANCO-VA model was used to test for between-group differences (SPT vs. UPT) at post-test using baseline values as covariates. No significant differences were found for CMJ height (p > 0.05, d = 0.54), SLJ (p > 0.05; d = 0.81), 10-m, 20-m, and 30-m sprint performances (p > 0.05, d = 0.00-0.24), IAT (p > 0.05, d = 0.48), and dynamic balance (SYBT and UYBT, both p > 0.05, d = 0.39, 0.08, respectively). Statistically significant between-group differences were detected for the USBT (p < 0.01, d = 1.86) and the SSBT (p < 0.01, d = 1.75) in favor of UPT. Following 8 weeks of SPT or UPT in prepuberal athletes, similar performance levels were observed in both groups for measures of jumping ability, speed, dynamic balance, and agility. However, if the goal is to additionally enhance static balance, UPT has an advantage over SPT. KW - youth KW - balance KW - jumping ability KW - athletic performance KW - football Y1 - 2017 U6 - https://doi.org/10.1055/s-0042-122337 SN - 0172-4622 SN - 1439-3964 VL - 38 SP - 370 EP - 377 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Wiesmeier, Isabella K. A1 - Dalin, Daniela A1 - Wehrle, Anja A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Dietterle, Jörg A1 - Weiller, Cornelius A1 - Gollhofer, Albert A1 - Maurer, Christoph T1 - Balance training enhances vestibular function and reduces overactive proprioceptive feedback in elderly JF - Frontiers in aging neuroscience N2 - Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training programon these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. KW - age KW - balance KW - vestibular KW - proprioception KW - training Y1 - 2017 U6 - https://doi.org/10.3389/fnagi.2017.00273 SN - 1663-4365 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Behm, David George A1 - Young, James D. A1 - Whitten, Joseph H. D. A1 - Reid, Jonathan C. A1 - Quigley, Patrick J. A1 - Low, Jonathan A1 - Li, Yimeng A1 - Lima, Camila D. A1 - Hodgson, Daniel D. A1 - Chaouachi, Anis A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis JF - Frontiers in physiology N2 - Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities. KW - children KW - boys KW - girls KW - plyometric training KW - resistance training Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00423 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Gschwind, Yves J. A1 - Bridenbaugh, Stephanie A. A1 - Reinhard, Sarah A1 - Granacher, Urs A1 - Monsch, Andreas U. A1 - Kressig, Reto W. T1 - Ginkgo biloba special extract LI 1370 improves dual-task walking in patients with MCI: a randomised, double-blind, placebo-controlled exploratory study JF - Aging clinical and experimental research N2 - Background In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. Aims This study investigated the effect of GBE on spatiotemporal gait parameters of MCI patients while walking under single and dual-task conditions. Methods Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona (R) forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. Results After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. Discussion Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. Conclusions The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE. KW - Gait KW - Walking KW - Executive function KW - Mild cognitive impairment KW - Cognitive enhancer KW - Ginkgo biloba extract Y1 - 2017 U6 - https://doi.org/10.1007/s40520-016-0699-y SN - 1594-0667 SN - 1720-8319 VL - 29 SP - 609 EP - 619 PB - Springer CY - New York ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Hammami, Mehrez A1 - Hachana, Younes A1 - Granacher, Urs T1 - EFFECTS OF HIGH-VELOCITY RESISTANCE TRAINING ON ATHLETIC PERFORMANCE IN PREPUBERAL MALE SOCCER ATHLETES JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - The aim of this study was to assess the effectiveness of a 12-week in-season low-to-moderate load high-velocity resistance training (HVRT) in addition to soccer training as compared with soccer training only on proxies of athletic performance in prepubertal soccer players. Twenty-four male soccer players performed 2 different protocols: (a) regular soccer training with 5 sessions per week (n = 11; age = 12.7 +/- 0.3 years) and (b) regular soccer training with 3 sessions per week and HVRT with 2 sessions per week (n = 13; age = 12.8 +/- 0.2 years). The outcome measures included tests for the assessment of muscle strength (e.g., 1 repetition maximum [1RM] half-squat tests), jump ability (e.g., countermovement jump, squat jump [SJ], standing long jump [SLJ], and multiple 5-bound tests [MB5s]), linear speed (e.g., 5-, 10-, 20-, and 30-m sprint tests), and change of direction (e.g., T-test and Illinois change of direction test). Results revealed significant group 3 test interactions for the SJ test (p <= 0.05, d = 0.59) and the SLJ test (p < 0.01, d = 0.83). Post hoc tests illustrated significant pre-post changes in the HVRT group (SJ: Delta 22%, p < 0.001, d = 1.26; SLJ: Delta 15%, p < 0.001, d = 1.30) but not in the control group. In addition, tendencies toward significant interaction effects were found for the 1RM half-squat (p = 0.08, d = 0.54) and the 10-m sprint test (p = 0.06, d = 0.57). Significant pre-post changes were found for both parameters in the HVRT group only (1RM: Delta 25%, p < 0.001, d = 1.23; 10-m sprint: Delta 7%, p < 0.0001, d = 1.47). In summary, in-season low-to-moderate load HVRT conducted in combination with regular soccer training is a safe and feasible intervention that has positive effects on maximal strength, vertical and horizontal jump and sprint performance as compared with soccer training only. KW - youth soccer KW - change of direction KW - jump performances KW - sprint Y1 - 2016 U6 - https://doi.org/10.1519/JSC.0000000000001433 SN - 1064-8011 SN - 1533-4287 VL - 30 SP - 3290 EP - 3297 PB - Wiley-Blackwell CY - Philadelphia ER - TY - JOUR A1 - Grabow, Lena A1 - Young, James D. A1 - Byrne, Jeannette M. A1 - Granacher, Urs A1 - Behm, David George T1 - Unilateral Rolling of the Foot did not Affect Non-Local Range of Motion or Balance JF - Journal of sports science & medicine N2 - Non-local or crossover (contralateral and non-stretched muscles) increases in range-of-motion (ROM) and balance have been reported following rolling of quadriceps, hamstrings and plantar flexors. Since there is limited information regarding plantar sole (foot) rolling effects, the objectives of this study were to determine if unilateral foot rolling would affect ipsilateral and contralateral measures of ROM and balance in young healthy adults. A randomized within-subject design was to examine non-local effects of unilateral foot rolling on ipsilateral and contralateral limb ankle dorsiflexion ROM and a modified sit-and-reachtest (SRT). Static balance was also tested during a 30 s single leg stance test. Twelve participants performed three bouts of 60 s unilateral plantar sole rolling using a roller on the dominant foot with 60 s rest intervals between sets. ROM and balance measures were assessed in separate sessions at pre-intervention, immediately and 10 minutes post-intervention. To evaluate repeated measures effects, two SRT pre-tests were implemented. Results demonstrated that the second pre-test SRT was 6.6% higher than the first pre-test (p = 0.009, d = 1.91). There were no statistically significant effects of foot rolling on any measures immediately or 10 min post-test. To conclude, unilateral foot rolling did not produce statistically significant increases in ipsilateral or contralateral dorsiflexion or SRT ROM nor did it affect postural sway. Our statistically non-significant findings might be attributed to a lower degree of roller-induced afferent stimulation due to the smaller volume of myofascia and muscle compared to prior studies. Furthermore, ROM results from studies utilizing a single pre-test without a sufficient warm-up should be viewed critically. KW - Crossover KW - flexibility KW - postural sway KW - myofascial KW - self massage Y1 - 2017 SN - 1303-2968 VL - 16 SP - 209 EP - 218 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Jafamezhadgero, Amir Ali A1 - Shad, Morteza Madadi A1 - Majlesi, Mahdi A1 - Granacher, Urs T1 - A comparison of running kinetics in children with and without genu varus: A cross sectional study JF - PLoS one N2 - Introduction Varus knee alignment has been identified as a risk factor for the progression of medial knee osteoarthritis. However, the underlying mechanisms have not been elucidated yet in children. Thus, the aims of the present study were to examine differences in ground reaction forces, loading rate, impulses, and free moment values during running in children with and without genu varus. Methods Thirty-six boys aged 9-14 volunteered to participate in this study. They were divided in two age-matched groups (genu varus versus healthy controls). Body weight adjusted three dimensional kinetic data (Fx, Fy, Fz) were collected during running at preferred speed using two Kistler force plates for the dominant and non-dominant limb. Results Individuals with knee genu varus produced significantly higher (p = .01; d = 1.09; 95%) body weight adjusted ground reaction forces in the lateral direction (Fx) of the dominant limb compared to controls. On the non-dominant limb, genu varus patients showed significantly higher body weight adjusted ground reaction forces values in the lateral (p = .01; d = 1.08; 86%) and medial (p < .001; d = 1.55; 102%) directions (Fx). Further, genu varus patients demonstrated 55% and 36% greater body weight adjusted loading rates in the dominant (p < .001; d = 2.09) and non-dominant (p < .001; d = 1.02) leg, respectively. No significant between-group differences were observed for adjusted free moment values (p>.05). Discussion Higher mediolateral ground reaction forces and vertical loading rate amplitudes in boys with genu varus during running at preferred running speed may accelerate the development of progressive joint degeneration in terms of the age at knee osteoarthritis onset. Therefore, practitioners and therapists are advised to conduct balance and strength training programs to improve lower limb alignment and mediolateral control during dynamic movements. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0185057 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Beurskens, Rainer A1 - Behm, David George A1 - Granacher, Urs T1 - Effects of drop height and surface instability on neuromuscular activation during drop jumps JF - Scandinavian journal of medicine & science in sports N2 - The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant drop heightxsurface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights 40cm (P<0.05; 1.25 d 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height. KW - Stretch-shortening cycle KW - EMG KW - preactivation KW - short latency response Y1 - 2017 U6 - https://doi.org/10.1111/sms.12732 SN - 0905-7188 SN - 1600-0838 VL - 27 SP - 1090 EP - 1098 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hammami, Raouf A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Behm, David George A1 - Chaouachi, Anis T1 - SEQUENCING EFFECTS OF BALANCE AND PLYOMETRIC TRAINING ON PHYSICAL PERFORMANCE IN YOUTH SOCCER ATHLETES JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT. KW - children KW - adolescents KW - power KW - jumps KW - sprints Y1 - 2016 U6 - https://doi.org/10.1519/JSC.0000000000001425 SN - 1064-8011 SN - 1533-4287 VL - 30 SP - 3278 EP - 3289 PB - Elsevier CY - Philadelphia ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Role of the trunk during drop jumps on stable and unstable surfaces JF - European journal of applied physiology N2 - The present study investigated associations between trunk muscle strength, jump performance, and lower limb kinematics during drop jumps on stable and unstable surfaces. Next to this behavioral approach, correlations were also computed on a neuromuscular level between trunk and leg muscle activity during the same test conditions. Twenty-nine healthy and physically active subjects (age 23 +/- A 3 years) were enrolled in this study. Peak isokinetic torque (PIT) of the trunk flexors and extensors was assessed separately on an isokinetic device. In addition, tests included drop jumps (DJ) on a force plate under stable and unstable (i.e., balance pad on top of the force plate) surfaces. Lower limb kinematics as well as electromyographic activity of selected trunk and leg muscles were analyzed. Significant positive but small correlations (0.50 a parts per thousand currency sign r a parts per thousand currency sign 0.66, p < 0.05) were detected between trunk extensor PIT and athletic performance measures (i.e., DJ height, DJ performance index), irrespective of surface condition. Further, significant negative but small correlation coefficients were examined between trunk extensor PIT and knee valgus motion under stable and unstable surface conditions (-0.48 a parts per thousand currency sign r a parts per thousand currency sign -0.45, p < 0.05). In addition, significant positive but small correlations (0.45 a parts per thousand currency sign r a parts per thousand currency sign 0.68, p < 0.05) were found between trunk and leg muscle activity, irrespective of surface condition. Behavioral and neuromuscular data from this study indicate that, irrespective of the surface condition (i.e., jumping on stable or unstable ground), the trunk plays a minor role for leg muscle performance/activity during DJ. This implies only limited effects of trunk muscle strengthening on jump performance in the stretch-shortening cycle. KW - Core stability KW - Jump height KW - Knee valgus motion KW - Ground reaction force KW - Stretch-shortening cycle KW - Electromyography Y1 - 2015 U6 - https://doi.org/10.1007/s00421-014-3004-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 1 SP - 139 EP - 146 PB - Springer CY - New York ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Pabst, Jan A1 - Granacher, Urs A1 - Buesch, Dirk T1 - Validity of the jump-and-reach test in subelite adolescent handball players JF - Journal of strength and conditioning research : the research journal of the NSCA KW - Vertec device KW - Optojump system KW - vertical jump height KW - field test KW - athlete testing KW - region/point elastic gym floor Y1 - 2017 U6 - https://doi.org/10.1519/JSC.0000000000001607 SN - 1064-8011 SN - 1533-4287 VL - 31 SP - 1282 EP - 1289 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - GEN A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players N2 - Background: The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. - Methods: Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. - Results: Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (−0.66 cm, p < 0.01, d = 1.41) and mean SJ (−0.91 cm, p < 0.01, d = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were “excellent” (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p < 0.05, d = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were “excellent” (ICC = 0.86 for CMJ and 0.82 for SJ). - Conclusion: Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 341 KW - Countermovement jump KW - Squat jump KW - Accelerometer KW - Lower-extremity muscle power KW - Athlete testing KW - Field test Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400967 ER - TY - JOUR A1 - Saeterbakken, Atle H. A1 - Stien, Nicolay A1 - Andersen, Vidar A1 - Scott, Suzanne A1 - Cumming, Kristoffer T. A1 - Behm, David G. A1 - Granacher, Urs A1 - Prieske, Olaf T1 - The effects of trunk muscle training on physical fitness and sport-specific performance in young and adult athletes BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background The role of trunk muscle training (TMT) for physical fitness (e.g., muscle power) and sport-specific performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a recent systematic review and meta-analysis on the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes is lacking. Objective To aggregate the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT effects. Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021. Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the effects of TMT on at least one measure of physical fitness (e.g., maximal muscle strength, change-of-direction speed (CODS)/agility, linear sprint speed) and sport-specific performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classified as either elite (competing at national and/or international level) or regional (i.e., recreational and sub-elite). Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-effects model was used to calculate weighted standardized mean differences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters. Results Overall, 31 studies with 693 participants aged 11-37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical fitness, there were significant, small-to-large effects of TMT on maximal muscle strength (SMD = 0.39), local muscular endurance (SMD = 1.29), lower limb muscle power (SMD = 0.30), linear sprint speed (SMD = 0.66), and CODS/agility (SMD = 0.70). Furthermore, a significant and moderate TMT effect was found for sport-specific performance (SMD = 0.64). Univariate sub-group analyses for subject-related moderator variables revealed significant effects of age on CODS/agility (p = 0.04), with significantly large effects for children (SMD = 1.53, p = 0.002). Further, there was a significant effect of number of training sessions on muscle power and linear sprint speed (p <= 0.03), with significant, small-to-large effects of TMT for > 18 sessions compared to <= 18 sessions (0.45 <= SMD <= 0.84, p <= 0.003). Additionally, session duration significantly modulated TMT effects on linear sprint speed, CODS/agility, and sport-specific performance (p <= 0.05). TMT with session durations <= 30 min resulted in significant, large effects on linear sprint speed and CODS/agility (1.66 <= SMD <= 2.42, p <= 0.002), whereas session durations > 30 min resulted in significant, large effects on sport-specific performance (SMD = 1.22, p = 0.008). Conclusions Our findings indicate that TMT is an effective means to improve selected measures of physical fitness and sport-specific performance in young and adult athletes.
Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (> 18) and/or shorter duration (<= 30 min) TMT sessions appear to be more effective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes. Y1 - 2022 U6 - https://doi.org/10.1007/s40279-021-01637-0 SN - 0112-1642 SN - 1179-2035 VL - 52 IS - 7 SP - 1599 EP - 1622 PB - Springer CY - Northcote ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 270 KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75100 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children JF - BMC pediatrics N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - https://doi.org/10.1186/s12887-015-0317-8 SN - 1471-2431 VL - 15 IS - 2 PB - BioMed Central CY - London ER - TY - JOUR A1 - Behm, David G. A1 - Alizadeh, Shahab A1 - Drury, Ben A1 - Granacher, Urs A1 - Moran, Jason T1 - Non-local acute stretching effects on strength performance in healthy young adults JF - European journal of applied physiology N2 - Background Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. Objective The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. Methods A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. Results Unilateral stretching protocols from six studies involved 6.3 +/- 2 repetitions of 36.3 +/- 7.4 s with 19.3 +/- 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 +/- 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 +/- 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. Conclusion The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others. KW - Flexibility KW - Power KW - Crossover KW - Fatigue KW - Mental fatigue KW - Neural inhibition Y1 - 2021 U6 - https://doi.org/10.1007/s00421-021-04657-w SN - 1439-6319 SN - 1439-6327 VL - 121 IS - 6 SP - 1517 EP - 1529 PB - Springer CY - Berlin ; Heidelberg ER - TY - GEN A1 - Sariati, Dorsaf A1 - Hammami, Raouf A1 - Zouhal, Hassane A1 - Clark, Cain Craig Truman A1 - Nebigh, Ammar A1 - Chtara, Moktar A1 - Chortane, Sabri Gaied A1 - Hackney, Anthony C. A1 - Souissi, Nizar A1 - Granacher, Urs A1 - Ben Ounis, Omar T1 - Improvement of Physical Performance Following a 6 Week Change-of-Direction Training Program in Elite Youth Soccer Players of Different Maturity Levels T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Change-of-direction (CoD) is a necessary physical ability of a field sport and may vary in youth players according to their maturation status. Objectives: The aim of this study is: to compare the effectiveness of a 6-week CoD training intervention on dynamic balance (CS-YBT), horizontal jump (5JT), speed (10 and 30-m linear sprint times), CoD with (15 m-CoD + B) and without (15 m-CoD) the ball, in youth male soccer players at different levels of maturity [pre- and post-peak height velocity (PHV)]. Materials and Methods: Thirty elite male youth soccer players aged 10–17 years from the Tunisian first division participated in this study. The players were divided into pre- (G1, n = 15) and post-PHV (G2, n = 15) groups. Both groups completed a similar 6-week training program with two sessions per week of four CoD exercises. All players completed the following tests before and after intervention: CS-YBT; 5 JT; 10, 30, and 15 m-CoD; and 15 m-CoD + B, and data were analyzed using ANCOVA. Results: All 30 players completed the study according to the study design and methodology. Adherence rate was 100% across all groups, and no training or test-related injuries were reported. Pre-PHV and post-PHV groups showed significant amelioration post-intervention for all dependent variables (after test > before test; p < 0.01, d = 0.09–1.51). ANOVA revealed a significant group × time interaction only for CS-YBT (F = 4.45; p < 0.04; η2 = 0.14), 5JT (F = 6.39; p < 0.02; η2 = 0.18), and 15 m-CoD (F = 7.88; p < 0.01; η2 = 0.22). CS-YBT, 5JT, and 15 m-CoD improved significantly in the post-PHV group (+ 4.56%, effect size = 1.51; + 4.51%, effect size = 1.05; and -3.08%, effect size = 0.51, respectively), more than the pre-PHV group (+ 2.77%, effect size = 0.85; + 2.91%, effect size = 0.54; and -1.56%, effect size = 0.20, respectively). Conclusion: The CoD training program improved balance, horizontal jump, and CoD without the ball in male preadolescent and adolescent soccer players, and this improvement was greater in the post-PHV players. The maturity status of the athletes should be considered when programming CoD training for soccer players. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 742 KW - youth soccer KW - peak height velocity KW - change of direction speed KW - training adaptation KW - football Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541019 SN - 1866-8364 SP - 1 EP - 8 PB - Universität Potsdam CY - Potsdam ER - TY - GEN A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Cardio-Respiratory endurance responses following a simulated 3 x 3 minutes amateur boxing contest in elite level boxers T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 675 KW - aerobic metabolism KW - physiological strain KW - striking combat sports KW - elite athletes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472338 SN - 1866-8364 IS - 675 ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study JF - PLoS ONE N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Thiele, Dirk A1 - Prieske, Olaf A1 - Chaabene, Helmi A1 - Granacher, Urs T1 - Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers BT - a systematic review with meta-analysis JF - Journal of sports sciences N2 - The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level. KW - resistance training KW - plyometric training KW - on-water performance KW - race KW - time KW - oarsmen KW - athletic performance Y1 - 2020 U6 - https://doi.org/10.1080/02640414.2020.1745502 SN - 0264-0414 SN - 1466-447X VL - 38 IS - 10 SP - 1186 EP - 1195 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Sandau, Ingo A1 - Chaabene, Helmi A1 - Granacher, Urs T1 - Concurrent validity of barbell force measured from video-based barbell kinematics during the snatch in male elite weightlifters T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study examined the concurrent validity of an inverse dynamic (force computed from barbell acceleration [reference method]) and a work-energy (force computed from work at the barbell [alternative method]) approach to measure the mean vertical barbell force during the snatch using kinematic data from video analysis. For this purpose, the acceleration phase of the snatch was analyzed in thirty male medal winners of the 2018 weightlifting World Championships (age: 25.2±3.1 years; body mass: 88.9±28.6 kg). Vertical barbell kinematics were measured using a custom-made 2D real-time video analysis software. Agreement between the two computational approaches was assessed using Bland-Altman analysis, Deming regression, and Pearson product-moment correlation. Further, principal component analysis in conjunction with multiple linear regression was used to assess whether individual differences related to the two approaches are due to the waveforms of the acceleration time-series data. Results indicated no mean difference (p > 0.05; d = −0.04) and an extremely large correlation (r = 0.99) between the two approaches. Despite the high agreement, the total error of individual differences was 8.2% (163.0 N). The individual differences can be explained by a multiple linear regression model (R2adj = 0.86) on principal component scores from the principal component analysis of vertical barbell acceleration time-series waveforms. Findings from this study indicate that the individual errors of force measures can be associated with the inverse dynamic approach. This approach uses vertical barbell acceleration data from video analysis that is prone to error. Therefore, it is recommended to use the work-energy approach to compute mean vertical barbell force as this approach did not rely on vertical barbell acceleration. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 716 KW - Acceleration KW - Linear regression analysis KW - Velocity KW - Principal component analysis KW - Kinematics KW - Motion KW - Scanning electron microscopy KW - Computer Software Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521678 SN - 1866-8364 IS - 716 ER - TY - JOUR A1 - Fernandez-Fernandez, Jaime A1 - Moya-Ramon, Manuel A1 - Santos-Rosa, Francisco Javier A1 - Gantois, Petrus A1 - Nakamura, Fabio Yuzo A1 - Sanz-Rivas, David A1 - Granacher, Urs T1 - Within-session sequence of the tennis serve training in youth elite players JF - International journal of environmental research and public health N2 - The influence of muscular fatigue on tennis serve performance within regular training sessions is unclear. Therefore, the aim of the present study was to examine the within-session sequence of the tennis serve in youth tennis. Twenty-five young male (14.9 +/- 0.9 years) and female (14.5 +/- 0.9 years) players participated in this within-subject crossover study, and they were randomly but sex-matched assigned to different training sequences (serve exercise before tennis training (BTS) or after tennis training (ATS)). Pre- and post-tests included serve velocity performance and accuracy, shoulder strength, and range-of-motion (ROM) performance (internal/external rotation). Results showed that after one week of serve training conducted following the ATS sequence, significant decreases were found in serve performance (e.g., speed and accuracy), with standardized differences ranging from d = 0.29 to 1.13, as well as the shoulder function (strength [d = 0.20 to 1.0] and ROM [d = 0.17 to 0.31]) in both female and male players, compared to the BTS sequence. Based on the present findings, it appears more effective to implement serve training before the regular tennis training in youth players. If applied after training, excessive levels of fatigue may cause shoulder imbalances that could be related to an increased injury risk. KW - athletes KW - athletic performance KW - fatigue KW - fitness KW - shoulder strength KW - range of motion Y1 - 2020 U6 - https://doi.org/10.3390/ijerph18010244 SN - 1660-4601 VL - 18 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zinke, Fridolin A1 - Gebel, Arnd A1 - Granacher, Urs A1 - Prieske, Olaf T1 - Acute Effects of Short-Term Local Tendon Vibration on Plantar Flexor Torque, Muscle Contractile Properties, Neuromuscular and Brain Activity in Young Athletes JF - Journal of sports science & medicine N2 - The purpose of this study was to examine the acute effects of short-term Achilles tendon vibration on plantar flexor torque, twitch contractile properties as well as muscle and cortical activity in young athletes. Eleven female elite soccer players aged 15.6 +/- 0.5 years participated in this study. Three different conditions were applied in randomized order: Achilles tendon vibration (80 Hz) for 30 and 300 s, and a passive control condition (300 s). Tests at baseline and following conditions included the assessment of peak plantar flexor torque during maximum voluntary contraction, electrically evoked muscle twitches (e.g., potentiated twitch peak torque [PT]), and electromyographic (EMG) activity of the plantar flexors. Additionally, electroencephalographic (EEG) activity of the primary motor and somatosensory cortex were assessed during a submaximal dynamic concentric-eccentric plantar flexion exercise using an elastic rubber band. Large-sized main effects of condition were found for EEG absolute alpha-1 and beta-1 band power (p <= 0.011; 1.5 <= d <= 2.6). Post-hoc tests indicated that alpha-1 power was significantly lower at 30 and 300 s (p = 0.009; d = 0.8) and beta-1 power significantly lower at 300 s (p < 0.001; d = 0.2) compared to control condition. No significant effect of condition was found for peak plantar flexor torque, electrical evoked muscle twitches, and EMG activity. In conclusion, short-term local Achilles tendon vibration induced lower brain activity (i.e., alpha-1 and beta-1 band power) but did not affect lower limb peak torque, twitch contractile properties, and muscle activity. Lower brain activity following short-term local Achilles tendon vibration may indicate improved cortical function during a submaximal dynamic exercise in female young soccer players. KW - Postactivation potentiation KW - electromyography KW - electroencephalography KW - maximum voluntary contraction KW - soccer Y1 - 2019 SN - 1303-2968 VL - 18 IS - 2 SP - 327 EP - 336 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - GEN A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-term seasonal development of anthropometry, body composition, physical fitness, and sport-specific performance in young olympic weightlifters T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The aim of this study is to monitor short-term seasonal development of young Olympic weightlifters’ anthropometry, body composition, physical fitness, and sport-specific performance. Fifteen male weightlifters aged 13.2 ± 1.3 years participated in this study. Tests for the assessment of anthropometry (e.g., body-height, body-mass), body-composition (e.g., lean-body-mass, relative fat-mass), muscle strength (grip-strength), jump performance (drop-jump (DJ) height, countermovement-jump (CMJ) height, DJ contact time, DJ reactive-strength-index (RSI)), dynamic balance (Y-balance-test), and sport-specific performance (i.e., snatch and clean-and-jerk) were conducted at different time-points (i.e., T1 (baseline), T2 (9 weeks), T3 (20 weeks)). Strength tests (i.e., grip strength, clean-and-jerk and snatch) and training volume were normalized to body mass. Results showed small-to-large increases in body-height, body-mass, lean-body-mass, and lower-limbs lean-mass from T1-to-T2 and T2-to-T3 (∆0.7–6.7%; 0.1 ≤ d ≤ 1.2). For fat-mass, a significant small-sized decrease was found from T1-to-T2 (∆13.1%; d = 0.4) and a significant increase from T2-to-T3 (∆9.1%; d = 0.3). A significant main effect of time was observed for DJ contact time (d = 1.3) with a trend toward a significant decrease from T1-to-T2 (∆–15.3%; d = 0.66; p = 0.06). For RSI, significant small increases from T1-to-T2 (∆9.9%, d = 0.5) were noted. Additionally, a significant main effect of time was found for snatch (d = 2.7) and clean-and-jerk (d = 3.1) with significant small-to-moderate increases for both tests from T1-to-T2 and T2-to-T3 (∆4.6–11.3%, d = 0.33 to 0.64). The other tests did not change significantly over time (0.1 ≤ d ≤ 0.8). Results showed significantly higher training volume for sport-specific training during the second period compared with the first period (d = 2.2). Five months of Olympic weightlifting contributed to significant changes in anthropometry, body-composition, and sport-specific performance. However, hardly any significant gains were observed for measures of physical fitness. Coaches are advised to design training programs that target a variety of fitness components to lay an appropriate foundation for later performance as an elite athlete. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 685 KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472609 SN - 1866-8364 IS - 685 ER - TY - GEN A1 - Jebabli, Nidhal A1 - Granacher, Urs A1 - Selmi, Mohamed Amin A1 - Al-Haddabi, Badriya A1 - Behm, David George A1 - Chaouachi, Anis A1 - Haj Sassi, Radhouane T1 - Listening to preferred music improved running performance without changing the pacing pattern during a 6 minute run test with young male adults T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Several studies have investigated the effects of music on both submaximal and maximal exercise performance at a constant work-rate. However, there is a lack of research that has examined the effects of music on the pacing strategy during self-paced exercise. The aim of this study was to examine the effects of preferred music on performance and pacing during a 6 min run test (6-MSPRT) in young male adults. Twenty healthy male participants volunteered for this study. They performed two randomly assigned trials (with or without music) of a 6-MSPRT three days apart. Mean running speed, the adopted pacing strategy, total distance covered (TDC), peak and mean heart rate (HRpeak, HRmean), blood lactate (3 min after the test), and rate of perceived exertion (RPE) were measured. Listening to preferred music during the 6-MSPRT resulted in significant TDC improvement (?10%; p = 0.016; effect size (ES) = 0.80). A significantly faster mean running speed was observed when listening to music compared with no music. The improvement of TDC in the present study is explained by a significant overall increase in speed (main effect for conditions) during the music trial. Music failed to modify pacing patterns as suggested by the similar reversed “J-shaped” profile during the two conditions. Blood-lactate concentrations were significantly reduced by 9% (p = 0.006, ES = 1.09) after the 6-MSPRT with music compared to those in the control condition. No statistically significant differences were found between the test conditions for HRpeak, HRmean, and RPE. Therefore, listening to preferred music can have positive effects on exercise performance during the 6-MSPRT, such as greater TDC, faster running speeds, and reduced blood lactate levels but has no effect on the pacing strategy. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 696 KW - RPE KW - work-rate distribution KW - blood lactate KW - aerobic exercise Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471884 SN - 1866-8364 IS - 696 ER - TY - GEN A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Effects of the barbell load on the acceleration phase during the snatch in Olympic weightlifting T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70–100% of their personal best in the snatch. The load–velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [−0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 681 KW - biomechanics KW - barbell velocity KW - performance KW - training KW - load–velocity relationship Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471599 SN - 1866-8364 IS - 681 ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Sammoud, Senda A1 - Prieske, Olaf A1 - Moran, Jason A1 - Ramirez-Campillo, Rodrigo A1 - Nejmaoui, Ali A1 - Granacher, Urs T1 - The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players JF - International journal of sports physiology and performance : IJSSP N2 - Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players. KW - young KW - football KW - stretch-shortening cycle KW - maturity KW - athletic KW - performance Y1 - 2020 U6 - https://doi.org/10.1123/ijspp.2018-0866 SN - 1555-0265 SN - 1555-0273 VL - 15 IS - 2 SP - 189 EP - 195 PB - Human Kinetics CY - Champaign, Ill. ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters JF - Sports KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2019 U6 - https://doi.org/10.3390/sports7120242 SN - 2075-4663 VL - 7 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wick, Kristin A1 - Leeger-Aschmann, Claudia S. A1 - Monn, Nico D. A1 - Radtke, Thomas A1 - Ott, Laura V. A1 - Rebholz, Cornelia E. A1 - Cruz, Sergio A1 - Gerber, Natalie A1 - Schmutz, Einat A. A1 - Puder, Jardena J. A1 - Munsch, Simone A1 - Kakebeeke, Tanja H. A1 - Jenni, Oskar G. A1 - Granacher, Urs A1 - Kriemler, Susi T1 - Interventions to Promote Fundamental Movement Skills in Childcare and Kindergarten: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background Proficiency in fundamental movement skills (FMS) lays the foundation for being physically active and developing more complex motor skills. Improving these motor skills may provide enhanced opportunities for the development of a variety of perceptual, social, and cognitive skills. Objective The objective of this systematic review and meta-analysis was to assess the effects of FMS interventions on actual FMS, targeting typically developing young children. Method Searches in seven databases (CINAHL, Embase, MEDLINE, PsycINFO, PubMed, Scopus, Web of Science) up to August 2015 were completed. Trials with children (aged 2-6 years) in childcare or kindergarten settings that applied FMS-enhancing intervention programs of at least 4 weeks and meeting the inclusion criteria were included. Standardized data extraction forms were used. Risk of bias was assessed using a standard scoring scheme (Effective Public Health Practice Project-Quality Assessment Tool for Quantitative Studies [EPHPP]). We calculated effects on overall FMS, object control and locomotor subscales (OCS and LMS) by weighted standardized mean differences (SMDbetween) using random-effects models. Certainty in training effects was evaluated using GRADE (Grading of Recommendations Assessment, Development, and Evaluation System). Results Thirty trials (15 randomized controlled trials and 15 controlled trials) involving 6126 preschoolers (aged 3.3-5.5 years) revealed significant differences among groups in favor of the intervention group (INT) with small-to-large effects on overall FMS (SMDbetween 0.46), OCS (SMDbetween 1.36), and LMS (SMDbetween 0.94). Our certainty in the treatment estimates based on GRADE is very low. Conclusions Although there is relevant effectiveness of programs to improve FMS proficiency in healthy young children, they need to be interpreted with care as they are based on low-quality evidence and immediate post-intervention effects without long-term follow-up. Y1 - 2017 U6 - https://doi.org/10.1007/s40279-017-0723-1 SN - 0112-1642 SN - 1179-2035 VL - 47 SP - 2045 EP - 2068 PB - Springer CY - Northcote ER - TY - JOUR A1 - Sariati, Dorsaf A1 - Hammami, Raouf A1 - Zouhal, Hassane A1 - Clark, Cain Craig Truman A1 - Nebigh, Ammar A1 - Chtara, Moktar A1 - Chortane, Sabri Gaied A1 - Hackney, Anthony C. A1 - Souissi, Nizar A1 - Granacher, Urs A1 - Ben Ounis, Omar ED - Trecroci, Athos T1 - Improvement of Physical Performance Following a 6 Week Change-of-Direction Training Program in Elite Youth Soccer Players of Different Maturity Levels JF - Frontiers in physiology N2 - Background: Change-of-direction (CoD) is a necessary physical ability of a field sport and may vary in youth players according to their maturation status. Objectives: The aim of this study is: to compare the effectiveness of a 6-week CoD training intervention on dynamic balance (CS-YBT), horizontal jump (5JT), speed (10 and 30-m linear sprint times), CoD with (15 m-CoD + B) and without (15 m-CoD) the ball, in youth male soccer players at different levels of maturity [pre- and post-peak height velocity (PHV)]. Materials and Methods: Thirty elite male youth soccer players aged 10–17 years from the Tunisian first division participated in this study. The players were divided into pre- (G1, n = 15) and post-PHV (G2, n = 15) groups. Both groups completed a similar 6-week training program with two sessions per week of four CoD exercises. All players completed the following tests before and after intervention: CS-YBT; 5 JT; 10, 30, and 15 m-CoD; and 15 m-CoD + B, and data were analyzed using ANCOVA. Results: All 30 players completed the study according to the study design and methodology. Adherence rate was 100% across all groups, and no training or test-related injuries were reported. Pre-PHV and post-PHV groups showed significant amelioration post-intervention for all dependent variables (after test > before test; p < 0.01, d = 0.09–1.51). ANOVA revealed a significant group × time interaction only for CS-YBT (F = 4.45; p < 0.04; η2 = 0.14), 5JT (F = 6.39; p < 0.02; η2 = 0.18), and 15 m-CoD (F = 7.88; p < 0.01; η2 = 0.22). CS-YBT, 5JT, and 15 m-CoD improved significantly in the post-PHV group (+ 4.56%, effect size = 1.51; + 4.51%, effect size = 1.05; and -3.08%, effect size = 0.51, respectively), more than the pre-PHV group (+ 2.77%, effect size = 0.85; + 2.91%, effect size = 0.54; and -1.56%, effect size = 0.20, respectively). Conclusion: The CoD training program improved balance, horizontal jump, and CoD without the ball in male preadolescent and adolescent soccer players, and this improvement was greater in the post-PHV players. The maturity status of the athletes should be considered when programming CoD training for soccer players. KW - youth soccer KW - peak height velocity KW - change of direction speed KW - training adaptation KW - football Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.668437 SN - 1664-042X VL - 12 SP - 1 EP - 8 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Röttger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults JF - Gerontology N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. KW - Elderly KW - Gait KW - Muscle strength KW - Physical performance KW - Postural balance Y1 - 2013 U6 - https://doi.org/10.1159/000343152 SN - 0304-324X VL - 59 IS - 2 SP - 105 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Chaouachi, Anis A1 - Ben Othman, Aymen A1 - Makhlouf, Issam A1 - Young, James D. A1 - Granacher, Urs A1 - Behm, David George T1 - Global Training Effects of Trained and Untrained Muscles With Youth Can be Maintained During 4 Weeks of Detraining JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Global (whole-body) effects of resistance training (i.e., cross-education) may be pervasive with children. Detraining induces less substantial deficits with children than adults. It was the objective of this study to investigate the global responses to 4 weeks of detraining after 8 weeks of unilateral leg press (LP) training in 10-13-year-old, pre-peak-height-velocity stage boys. Subjects were randomly separated into 2 unilateral resistance training groups (high load/low repetitions [HL-LR] and low load/high repetitions [LL-HR], and control group). Assessments at pre-training, post-training, and detraining included dominant and nondominant limbs, unilateral, 1 repetition maximum (1RM) and 60% 1RM LP, knee extension, knee flexion, elbow flexion, and handgrip maximal voluntary isometric contraction (MVIC), and countermovement jump (CMJ). All measures significantly increased from pre-test to detraining for both training programs, except for elbow flexion MVIC with increases only with HL-LR. All measures except CMJ and handgrip MVIC significantly decreased from post-test to detraining, except for elbow flexion MVIC with decreases only with HL-LR. The dominant trained limb experienced significantly greater LP improvements (pre- to detraining) and decrements (post- to detraining) with LP 1RM and 60% 1RM LP. In conclusion, youth HL-LR and LL-HR global training effects of trained and untrained limbs demonstrate similar benefits (pre- to detraining) and decrements (post- to detraining) with detraining. The findings emphasize that training any muscle group in a child can have positive global implications for improved strength and power that can persist over baseline measures for at least a month. KW - adolescents KW - strength training KW - deconditioning KW - cross-education KW - children Y1 - 2019 U6 - https://doi.org/10.1519/JSC.0000000000002606 SN - 1064-8011 SN - 1533-4287 VL - 33 IS - 10 SP - 2788 EP - 2800 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Beurskens, Rainer A1 - Behm, David George A1 - Granacher, Urs T1 - Effects of Drop-height and Surface Instability on Jump Performance and Knee Kinematics JF - International journal of sports medicine N2 - The purpose of this study was to examine the combined effects of drop-height and surface condition on drop jump (DJ) performance and knee joint kinematics. DJ performance, sagittal and frontal plane knee joint kinematics were measured in jump experienced young male and female adults during DJs on stable, unstable and highly unstable surfaces using different drop-heights (20, 40, 60 cm). Findings revealed impaired DJ performance (Δ5–16%; p<0.05; 1.43≤d≤2.82), reduced knee valgus motion (Δ33–52%; p<0.001; 2.70≤d≤3.59), and larger maximum knee flexion angles (Δ13–19%; p<0.01; 1.74≤d≤1.75) when using higher (60 cm) compared to lower drop-heights (≤40 cm). Further, lower knee flexion angles and velocity were found (Δ8-16%; p<0.01; 1.49≤d≤2.38) with increasing surface instability. When performing DJs from high (60 cm) compared to moderate drop-heights (40 cm) on highly unstable surfaces, higher knee flexion velocity and maximum knee valgus angles were found (Δ15–19%; p<0.01; 1.50≤d≤1.53). No significant main and/or interaction effects were observed for the factor sex. In conclusion, knee motion strategies were modified by the factors ‘drop-height’ and/or ‘surface instability’. The combination of high drop-heights (>40 cm) together with highly unstable surfaces should be used cautiously during plyometrics because this may increase the risk of injury due to higher knee valgus stress. KW - drop jump KW - knee flexion angle KW - knee valgus angle KW - knee valgus motion Y1 - 2017 U6 - https://doi.org/10.1055/s-0043-117610 SN - 0172-4622 SN - 1439-3964 VL - 39 IS - 1 SP - 50 EP - 57 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Chaabene, Helmi A1 - Kullmann, Niclas A1 - Granacher, Urs T1 - Effects of Individualized Versus Traditional Power Training on Strength, Power, Jump Performances, and Body Composition in Young Male Nordic Athletes JF - International journal of sports physiology and performance N2 - Purpose: This study aimed to examine the effects of individualized-load power training (IPT) versus traditional moderate-load power training (TPT) on strength, power, jump performance, and body composition in elite young Nordic athletes. Methods: In a randomized crossover design, 10 young male athletes (ski jumpers, Nordic combined athletes) age 17.5 (0.6) years (biological maturity status: +3.5 y postpeak height velocity) who competed on a national or international level performed 5 weeks of IPT (4 x 5 repetitions at 49%-72% 1-repetiton maximum [RM]) and TPT (5 x 5 repetitions at 50%-60% 1-RM) in addition to their regular training. Testing before, between, and after both training blocks comprised the assessment of muscle strength (loaded back squat 3-RM), power (maximal loaded back squat power), jump performance (eg, drop-jump height, reactive strength index), and body composition (eg, skeletal muscle mass). Results: Significant, large-size main effects for time were found for muscle strength (P < .01; g = 2.7), reactive strength index (P = .03; g= 1.6), and drop jump height (P = .02; g= 1.9) irrespective of the training condition (IPT, TPT). No significant time-by-condition interactions were observed. For measures of body composition, no significant main effects of condition and time or time-by-condition interactions were found. Conclusions: Our findings demonstrate that short-term IPT and TPT at moderate loads in addition to regular training were equally effective in improving measures of muscle strength (loaded back squat 3-RM) and vertical jump performance (reactive strength index, drop jump, and height) in young Nordic athletes. KW - ballistic training KW - optimal load KW - monitoring KW - progression KW - ski jumping Y1 - 2022 U6 - https://doi.org/10.1123/ijspp.2021-0074 SN - 1555-0265 SN - 1555-0273 VL - 17 IS - 4 SP - 541 EP - 548 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Effects of the barbell load on the acceleration phase during the snatch in elite Olympic weightlifting JF - Sports N2 - The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70-100% of their personal best in the snatch. The load-velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [-0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting. KW - biomechanics KW - barbell velocity KW - performance KW - training KW - load-velocity KW - relationship Y1 - 2020 U6 - https://doi.org/10.3390/sports8050059 SN - 2075-4663 VL - 8 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Vandervoort, A. A. A1 - DeVita, P. A1 - Hortobagyi, Tibor T1 - The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown JF - Ageing research reviews : ARR N2 - Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22% and 12% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19% and 9% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35% and 13% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions. KW - Aging KW - Strength training KW - Power training KW - Gait biomechanics Y1 - 2013 U6 - https://doi.org/10.1016/j.arr.2013.03.001 SN - 1568-1637 VL - 12 IS - 2 SP - 618 EP - 627 PB - Elsevier CY - Clare ER - TY - GEN A1 - Gäbler, Martijn A1 - Prieske, Olaf A1 - Hortobagyi, Tibor A1 - Granacher, Urs T1 - The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth BT - A Systematic Review and Meta-Analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Combining training of muscle strength and cardiorespiratory fitness within a training cycle could increase athletic performance more than single-mode training. However, the physiological effects produced by each training modality could also interfere with each other, improving athletic performance less than single-mode training. Because anthropometric, physiological, and biomechanical differences between young and adult athletes can affect the responses to exercise training, young athletes might respond differently to concurrent training (CT) compared with adults. Thus, the aim of the present systematic review with meta-analysis was to determine the effects of concurrent strength and endurance training on selected physical fitness components and athletic performance in youth. A systematic literature search of PubMed and Web of Science identified 886 records. The studies included in the analyses examined children (girls age 6–11 years, boys age 6–13 years) or adolescents (girls age 12–18 years, boys age 14–18 years), compared CT with single-mode endurance (ET) or strength training (ST), and reported at least one strength/power—(e.g., jump height), endurance—(e.g., peak V°O2, exercise economy), or performance-related (e.g., time trial) outcome. We calculated weighted standardized mean differences (SMDs). CT compared to ET produced small effects in favor of CT on athletic performance (n = 11 studies, SMD = 0.41, p = 0.04) and trivial effects on cardiorespiratory endurance (n = 4 studies, SMD = 0.04, p = 0.86) and exercise economy (n = 5 studies, SMD = 0.16, p = 0.49) in young athletes. A sub-analysis of chronological age revealed a trend toward larger effects of CT vs. ET on athletic performance in adolescents (SMD = 0.52) compared with children (SMD = 0.17). CT compared with ST had small effects in favor of CT on muscle power (n = 4 studies, SMD = 0.23, p = 0.04). In conclusion, CT is more effective than single-mode ET or ST in improving selected measures of physical fitness and athletic performance in youth. Specifically, CT compared with ET improved athletic performance in children and particularly adolescents. Finally, CT was more effective than ST in improving muscle power in youth. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 471 KW - child KW - adolescent KW - muscle strength KW - cardiorespiratory fitness KW - physical conditioning human KW - resistance training KW - youth sports Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417683 IS - 471 ER - TY - GEN A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children BT - a 4 year longitudinal study N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 360 KW - motor performance KW - youth KW - primary school KW - maturation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401418 ER - TY - JOUR A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial JF - BMC sports science, medicine & rehabilitation N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2014 U6 - https://doi.org/10.1186/2052-1847-6-40 SN - 2052-1847 VL - 6 PB - BioMed Central CY - London ER - TY - GEN A1 - Hammami, Raouf A1 - Chaabene, Helmi A1 - Kharrat, Fatma A1 - Werfelli, Hanen A1 - Duncan, Michael A1 - Rebai, Haithem A1 - Granacher, Urs T1 - Acute effects of different balance exercise types on selected measures of physical fitness in youth female volleyball players T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Earlier studies have shown that balance training (BT) has the potential to induce performance enhancements in selected components of physical fitness (i.e., balance, muscle strength, power, speed). While there is ample evidence on the long-term effects of BT on components of physical fitness in youth, less is known on the short-term or acute effects of single BT sessions on selected measures of physical fitness. Objective To examine the acute effects of different balance exercise types on balance, change-of-direction (CoD) speed, and jump performance in youth female volleyball players. Methods Eleven female players aged 14 years participated in this study. Three types of balance exercises (i.e., anterior, posterolateral, rotational type) were conducted in randomized order. For each exercise, 3 sets including 5 repetitions were performed. Before and after the performance of the balance exercises, participants were tested for their static balance (center of pressure surface area [CoP SA] and velocity [CoP V]) on foam and firm surfaces, CoD speed (T-Half test), and vertical jump height (countermovement jump [CMJ] height). A 3 (condition: anterior, mediolateral, rotational balance exercise type) × 2 (time: pre, post) analysis of variance was computed with repeated measures on time. Results Findings showed no significant condition × time interactions for all outcome measures (p > 0.05). However, there were small main effects of time for CoP SA on firm and foam surfaces (both d = 0.38; all p < 0.05) with no effect for CoP V on both surface conditions (p > 0.05). For CoD speed, findings showed a large main effect of time (d = 0.91; p < 0.001). However, for CMJ height, no main effect of time was observed (p > 0.05). Conclusions Overall, our results indicated small-to-large changes in balance and CoD speed performances but not in CMJ height in youth female volleyball players, regardless of the balance exercise type. Accordingly, it is recommended to regularly integrate balance exercises before the performance of sport-specific training to optimize performance development in youth female volleyball players. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 713 KW - Postural stability KW - Conditioning activity KW - Short‐term effect KW - Team sports KW - Youth Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517477 SN - 1866-8364 IS - 713 ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Deak, Dorina A1 - Farkas, Dora A1 - Blenyesi, Eszter A1 - Torok, Katalin A1 - Granacher, Urs A1 - Tollar, Jozsef T1 - Effects of exercise dose and detraining duration on mobility at late midlife BT - a randomized clinical trial JF - Gerontology N2 - Background: Office workers near retirement tend to be sedentary and can be prone to mobility limitations and diseases. We examined the dose effects of exergaming volume and duration of detraining on motor and cognitive function in office workers at late midlife to reduce sedentariness and mobility limitations. Methods: In an assessor-blinded randomized trial, 160 workers aged 55-65 years performed physically active video games in a nonimmersive form of virtual reality (exergaming) in small, supervised groups for 1 h, 1x, 2x, or 3x/week for 8 weeks followed by detraining for 8 and 16 weeks. Exergaming comprises high-intensity, full-body sensorimotor coordination, balance, endurance, and strengthening exercises. The primary outcome was the 6-minute walk test (6MWT), and secondary outcomes were body mass, self-reported physical activity, sleep quality, Berg Balance Scale, Short Physical Performance Battery, fast gait speed, dynamic balance, heart rate recovery after step test, and 6 cognitive tests. Results: The 3 groups were not different in any of the outcomes at baseline (all p > 0.05). The outcomes were stable and had acceptable reliability (intraclass correlation coefficients >= 0.334) over an 8-week control period. Training produced an inverted U-shaped dose response of no (1x), most (2x), and medium (3x/week) effects of exergaming volume in most motor and selected cognitive outcomes. The distance walked in the 6MWT (primary outcome) increased most (94 m, 19%, p < 0.05), medium (57 m, 12%, p < 0.05), and least (4 m, 1%) after exergaming 2x, 3x, or 0x (control) (all different p < 0.05). The highest responders tended to retain the exercise effects over 8 weeks of detraining, independent of training volume. This maintenance effect was less consistent after 16 weeks of detraining. Conclusion: Less was more during training and lasted longer after detraining. A medium dose volume of exergaming produced the largest clinically meaningful improvements in mobility and selected cognitive tests in 60-year-old office workers with mild mobility limitations and intact cognition. KW - exercise KW - dose response KW - walking capacity KW - cognitive function Y1 - 2021 U6 - https://doi.org/10.1159/000513505 SN - 0304-324X SN - 1423-0003 VL - 67 IS - 4 SP - 403 EP - 414 PB - Karger CY - Basel ER - TY - JOUR A1 - Negyesi, Janos A1 - Hortobagyi, Tibor A1 - Hill, Jessica A1 - Granacher, Urs A1 - Nagatomi, Ryoichi T1 - Can compression garments reduce the deleterious effects of physical exercise on muscle strength? BT - a systematic review and meta-analyses JF - Sports medicine N2 - Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs' beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95% confidence interval]) at the following time points (t) after physical exercise: immediately <= t < 24 h: - 0.02 (- 0.22 to 0.19), p = 0.87; 24 <= t < 48 h: - 0.00 (- 0.22 to 0.21), p = 0.98; 48 <= t < 72 h: - 0.03 (- 0.43 to 0.37), p = 0.87; 72 <= t < 96 h: 0.14 (- 0.21 to 0.49), p = 0.43; 96 h <= t: 0.26 (- 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength. Y1 - 2022 U6 - https://doi.org/10.1007/s40279-022-01681-4 SN - 0112-1642 SN - 1179-2035 VL - 52 IS - 9 SP - 2159 EP - 2175 PB - Springer CY - Northcote ER - TY - JOUR A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Hortobagyi, Tibor A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas T1 - The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review JF - Sports medicine N2 - Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises. Y1 - 2013 U6 - https://doi.org/10.1007/s40279-013-0041-1 SN - 0112-1642 VL - 43 IS - 7 SP - 627 EP - 641 PB - Springer CY - Auckland ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Granacher, Urs A1 - Fernandez-del-Olmo, Miguel A1 - Howatson, Glyn A1 - Manca, Andrea A1 - Deriu, Franca A1 - Taube, Wolfgang A1 - Gruber, Markus A1 - Marquez, Gonzalo A1 - Lundbye-Jensen, Jesper A1 - Colomer-Poveda, David T1 - Functional relevance of resistance training-induced neuroplasticity in health and disease JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease. KW - Maximal voluntary contraction (MVC) KW - strength training KW - Electromyography (EMG) KW - Transcranial magnetic brain stimulation (TMS) KW - Electroencephalography (EEG) KW - Functional magnetic resonance imaging (fMRI) KW - athletic performance KW - aging KW - Parkinson's disease KW - Multiple sclerosis KW - stroke KW - directed acyclic graphs KW - causal mediation analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.neubiorev.2020.12.019 SN - 0149-7634 SN - 1873-7528 VL - 122 SP - 79 EP - 91 PB - Elsevier CY - Oxford ER -