TY - GEN A1 - Vink, Jorick Sandor A1 - Heger, Alexander A1 - Krumholz, Mark R. A1 - Puls, Joachim A1 - Banerjee, Shiladitya A1 - Castro, Norberto A1 - Chen, K.-J. A1 - Chenè, A.-N. A1 - Crowther, P. A. A1 - Daminelli, A. A1 - Gräfener, G. A1 - Groh, J. H. A1 - Hamann, Wolf-Rainer A1 - Heap, S. A1 - Herrero, A. A1 - Kaper, L. A1 - Najarro, F. A1 - Oskinova, Lida A1 - Roman-Lopes, A. A1 - Rosen, A. A1 - Sander, A. A1 - Shirazi, M. A1 - Sugawara, Y. A1 - Tramper, F. A1 - Vanbeveren, D. A1 - Voss, R. A1 - Wofford, A. A1 - Zhang, Y. T1 - Very massive stars in the local universe T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Recent studies have claimed the existence of very massive stars (VMS) up to 300 M⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 601 KW - stars: massive stars KW - stars: mass-loss KW - stars: stellar evolution Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415220 SN - 1866-8372 IS - 601 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, G. A1 - Liermann, A. A1 - Hainich, Rainer A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Ramachandran, Varsha A1 - Todt, Helge Tobias A1 - Oskinova, Lida T1 - The Galactic WN stars revisited BT - Impact of Gaia distances on fundamental stellar parameters JF - Astronomy and astrophysics : an international weekly journal N2 - Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: evolution KW - stars: distances Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834850 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER -