TY - CHAP A1 - Gräfener, G. T1 - Clumping in hydrodynamic atmosphere models N2 - We investigate the effect of wind clumping on the dynamics of Wolf-Rayet winds, by means of the Potsdam Wolf-Rayet (PoWR) hydrodynamic atmosphere models. In the limit of microclumping the radiative acceleration is generally enhanced. We examine the reasons for this effect and show that the resulting wind structure depends critically on the assumed radial dependence of the clumping factor D(r). The observed terminal wind velocities for WR stars imply that D(r) increases to very large values in the outer part of the wind, in agreement with the assumption of detached expanding shells. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17925 ER - TY - JOUR A1 - Tramper, F. A1 - Straal, S. M. A1 - Sanyal, D. A1 - Sana, Hugues A1 - de Koter, A. A1 - Gräfener, G. A1 - Langer, N. A1 - Vink, J. S. A1 - de Mink, S. E. A1 - Kaper, L. T1 - Massive Wolf-Rayet stars on the verge to explode BT - the properties of the WO stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The enigmatic oxygen-sequence Wolf-Rayet stars represent a rare stage in the evolution of massive stars. Their properties can provide unique constraints on the pre-supernova evolution of massive stars. This work presents the results of a quantitative spectroscopic analysis of the known single WO stars, with the aim to obtain the key stellar parameters and deduce their evolutionary state.X-Shooter spectra of the WO stars are modeled using the line-blanketed non-local thermal equilibrium atmosphere code cmfgen. The obtained stellar parameters show that the WO stars are very hot, with temperatures ranging from 150 kK to 210 kK. Their chemical composition is dominated by carbon (>50%), while the helium mass fraction is very low (down to 14%). Oxygen mass fractions reach as high as 25%. These properties can be reproduced with dedicated evolutionary models for helium stars, which show that the stars are post core-helium burning and very close to their eventual supernova explosion. The helium-star masses indicate initial masses or approximately 40 - 60M⊙.Thus, WO stars represent the final evolutionary stage of stars with estimated initial masses of 40 - 60M⊙. They are post core-helium burning and may explode as type Ic supernovae within a few thousand years. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87786 SP - 109 EP - 112 ER - TY - CHAP A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Gräfener, G. T1 - Clumping in [WC]-type Central Stars from electron-scattering line wings N2 - While there is strong evidence for clumping in the winds of massive hot stars, very little is known about clumping in the winds from Central Stars. We have checked [WC]-type CSPN winds for clumping by inspecting the electron-scattering line wings. At least for three stars we found indications for wind inhomogeneities. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17711 ER - TY - GEN A1 - Vink, Jorick Sandor A1 - Heger, Alexander A1 - Krumholz, Mark R. A1 - Puls, Joachim A1 - Banerjee, Shiladitya A1 - Castro, Norberto A1 - Chen, K.-J. A1 - Chenè, A.-N. A1 - Crowther, P. A. A1 - Daminelli, A. A1 - Gräfener, G. A1 - Groh, J. H. A1 - Hamann, Wolf-Rainer A1 - Heap, S. A1 - Herrero, A. A1 - Kaper, L. A1 - Najarro, F. A1 - Oskinova, Lida A1 - Roman-Lopes, A. A1 - Rosen, A. A1 - Sander, A. A1 - Shirazi, M. A1 - Sugawara, Y. A1 - Tramper, F. A1 - Vanbeveren, D. A1 - Voss, R. A1 - Wofford, A. A1 - Zhang, Y. T1 - Very massive stars in the local universe T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Recent studies have claimed the existence of very massive stars (VMS) up to 300 M⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 601 KW - stars: massive stars KW - stars: mass-loss KW - stars: stellar evolution Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415220 SN - 1866-8372 IS - 601 ER - TY - JOUR A1 - Hamann, Wolf-Rainer A1 - Gräfener, G. A1 - Liermann, A. A1 - Hainich, Rainer A1 - Sander, Andreas Alexander Christoph A1 - Shenar, Tomer A1 - Ramachandran, Varsha A1 - Todt, Helge Tobias A1 - Oskinova, Lida T1 - The Galactic WN stars revisited BT - Impact of Gaia distances on fundamental stellar parameters JF - Astronomy and astrophysics : an international weekly journal N2 - Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD. KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - stars: atmospheres KW - stars: evolution KW - stars: distances Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834850 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Shenar, Tomer A1 - Richardson, N. D. A1 - Sablowski, Daniel P. A1 - Hainich, Rainer A1 - Sana, H. A1 - Moffat, A. F. J. A1 - Todt, Helge Tobias A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Sander, Andreas Alexander Christoph A1 - Tramper, Frank A1 - Langer, Norbert A1 - Bonanos, Alceste Z. A1 - de Mink, Selma E. A1 - Gräfener, G. A1 - Crowther, Paul A1 - Vink, J. S. A1 - Almeida, Leonardo A. A1 - de Koter, A. A1 - Barbá, Rodolfo A1 - Herrero, A. A1 - Ulaczyk, Krzysztof T1 - The tarantula massive binary monitoring BT - II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145 JF - Astronomy and astrophysics : an international weekly journal N2 - We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M-circle dot, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0 : 78 and minimum masses of M-1 sin(3) i approximate to M-2 sin(3) i = 13 +/- 2 M-circle dot, with q = M-2/M-1 = 1.01 +/- 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 +/- 6 degrees). Our analysis thus implies M-1 = 53(-20)(+40) and M2 = 54(-20)(+40) M-circle dot, excluding M-1 > 300 M-circle dot. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of approximate to 80 M-circle dot and initial masses of M-i,M-1 approximate to 10(5) and M-i,M-2 approximate to 90 M-circle dot, consistent with the upper limits of our derived orbital masses, and would imply an age of approximate to 2.2 Myr. KW - binaries: spectroscopic KW - stars: Wolf-Rayet KW - stars: massive KW - Magellanic Clouds KW - stars: individual: R 145 KW - stars: atmospheres Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629621 SN - 1432-0746 VL - 598 PB - EDP Sciences CY - Les Ulis ER -