TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 737 KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434661 SN - 1866-8372 IS - 737 SP - 785 EP - 807 ER - TY - JOUR A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara JF - Solid Earth N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - https://doi.org/10.5194/se-10-785-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 SP - 785 EP - 807 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Bohnhoff, Marco A1 - Strecker, Manfred R. T1 - Lithospheric strength variations and seismotectonic segmentation below the Sea of Marmara JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The Sea of Marmara is a tectonically active basin that straddles the North Anatolian Fault Zone (NAFZ), a major strike-slip fault that separates the Eurasian and Anatolian tectonic plates. The Main Marmara Fault (MMF), which is part of the NAFZ, contains an approximately 150 km long seismotectonic segment that has not ruptured since 1766. A key question for seismic hazard and risk assessment is whether or not the next rupture along this segment is likely to produce one major earthquake or a series of smaller earthquakes. Geomechanical characteristics such as along-strike variations in rock strength may provide an important control on seismotectonic segmentation. We find that variations in lithospheric strength throughout the Marmara region control the mechanical segmentation of the MMF and help explain its long-term seismotectonic segmentation. In particular, a strong crust that is mechanically coupled to the upper mantle spatially correlates with aseismic patches, where the MMF bends and changes its strike in response to the presence of high-density lower crustal bodies. Between the bends, mechanically weaker crustal domains that are decoupled from the mantle indicate a predominance of creeping. These results are highly relevant for the ongoing debate regarding the characteristics of the Marmara seismic gap, especially in view of the seismic hazard (Mw > 7) in the densely populated Marmara region. KW - North Anatolian Fault Zone KW - Sea of Marmara KW - Seismic gap KW - Lithospheric KW - strength KW - Thermal modeling KW - Rheological modeling Y1 - 2021 U6 - https://doi.org/10.1016/j.tecto.2021.228999 SN - 0040-1951 SN - 1879-3266 VL - 815 PB - Elsevier CY - Amsterdam [u.a.] ER -