TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Sippel, Judith A1 - Strecker, Manfred T1 - Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean BT - the Southwest African and the Norwegian margins N2 - Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature–depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere–asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 414 KW - radiogenic heat-production KW - European basin system KW - lower crustal bodies KW - north-atlantic KW - subsidence analysis KW - sedimentary basins KW - tectonic evolution KW - Argentine margine KW - thermal field KW - voring basin Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409493 ER - TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Sippel, Judith A1 - Strecker, Manfred T1 - Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean BT - the Southwest African and the Norwegian margins T2 - Postprints der Universität Potsadm : Mathematisch-Naturwissenschaftliche Reihe N2 - The aim of this study is to investigate the shal- low thermal field differences for two differently aged pas- sive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously pub- lished 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive mar- gins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysi- cal data such as seismic observations and the gravity field. We extracted the temperature–depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condi- tion and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increas- ing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geologi- cal structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat pro- duction, sediment insulating effect, and thermal lithosphere– asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 621 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418210 SN - 1866-8372 IS - 621 ER - TY - JOUR A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Sippel, Judith A1 - Strecker, Manfred T1 - Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean BT - the Southwest African and the Norwegian margins JF - Solid Earth N2 - Abstract. The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature–depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere–asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day. KW - radiogenic heat-production KW - European basin system KW - lower crustal bodies KW - north-atlantic KW - subsidence analysis KW - sedimentary basins KW - tectonic evolution KW - Argentine margine KW - thermal field KW - voring basin Y1 - 2018 U6 - https://doi.org/10.5194/se-9-139-2018 SN - 1869-9529 SN - 1869-9510 VL - 9 IS - 1 SP - 139 EP - 158 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 737 KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434661 SN - 1866-8372 IS - 737 SP - 785 EP - 807 ER - TY - JOUR A1 - Gholamrezaie, Ershad A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Heidbach, Oliver A1 - Strecker, Manfred T1 - 3-D crustal density model of the Sea of Marmara JF - Solid Earth N2 - Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible “end-member” solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region. KW - North Anatolian Fault KW - Shear Zone KW - Northwestern Anatolia KW - Geomechanical Model KW - Tectonic Evolution KW - Slip Distribution KW - Middle Strand KW - Pull-Apart KW - Long-Term KW - NW Turkey Y1 - 2019 U6 - https://doi.org/10.5194/se-10-785-2019 SN - 1869-9510 SN - 1869-9529 VL - 10 SP - 785 EP - 807 PB - Copernicus Publ. CY - Göttingen ER - TY - THES A1 - Gholamrezaie, Ershad T1 - Variations of lithospheric strength in different tectonic settings T1 - Unterschiede in der Festigkeit der Lithosphäre in verschiedenen tektonischen Umgebungen N2 - Rheology describes the flow of matter under the influence of stress, and - related to solids- it investigates how solids subjected to stresses deform. As the deformation of the Earth’s outer layers, the lithosphere and the crust, is a major focus of rheological studies, rheology in the geosciences describes how strain evolves in rocks of variable composition and temperature under tectonic stresses. It is here where deformation processes shape the form of ocean basins and mountain belts that ultimately result from the complex interplay between lithospheric plate motion and the susceptibility of rocks to the influence of plate-tectonic forces. A rigorous study of the strength of the lithosphere and deformation phenomena thus requires in-depth studies of the rheological characteristics of the involved materials and the temporal framework of deformation processes. This dissertation aims at analyzing the influence of the physical configuration of the lithosphere on the present-day thermal field and the overall rheological characteristics of the lithosphere to better understand variable expressions in the formation of passive continental margins and the behavior of strike-slip fault zones. The main methodological approach chosen is to estimate the present-day thermal field and the strength of the lithosphere by 3-D numerical modeling. The distribution of rock properties is provided by 3-D structural models, which are used as the basis for the thermal and rheological modeling. The structural models are based on geophysical and geological data integration, additionally constrained by 3-D density modeling. More specifically, to decipher the thermal and rheological characteristics of the lithosphere in both oceanic and continental domains, sedimentary basins in the Sea of Marmara (continental transform setting), the SW African passive margin (old oceanic crust), and the Norwegian passive margin (young oceanic crust) were selected for this study. The Sea of Marmara, in northwestern Turkey, is located where the dextral North Anatolian Fault zone (NAFZ) accommodates the westward escape of the Anatolian Plate toward the Aegean. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the lateral crustal heterogeneities is presented for the first time in this study. Here, I use different gravity datasets and the general non-uniqueness in potential field modeling, to propose three possible end-member scenarios of crustal configuration. The models suggest that pronounced gravitational anomalies in the basin originate from significant density heterogeneities within the crust. The rheological modeling reveals that associated variations in lithospheric strength control the mechanical segmentation of the NAFZ. Importantly, a strong crust that is mechanically coupled to the upper mantle spatially correlates with aseismic patches where the fault bends and changes its strike in response to the presence of high-density lower crustal bodies. Between the bends, mechanically weaker crustal domains that are decoupled from the mantle are characterized by creep. For the passive margins of SW Africa and Norway, two previously published 3-D conductive and lithospheric-scale thermal models were analyzed. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data, such as seismic observations and the gravity field. Here, the rheological modeling suggests that the present-day lithospheric strength across the oceanic domain is ultimately affected by the age and past thermal and tectonic processes as well as the depth of the thermal lithosphere-asthenosphere boundary, while the configuration of the crystalline crust dominantly controls the rheological behavior of the lithosphere beneath the continental domains of both passive margins. The thermal and rheological models show that the variations of lithospheric strength are fundamentally influenced by the temperature distribution within the lithosphere. Moreover, as the composition of the lithosphere significantly influences the present-day thermal field, it therefore also affects the rheological characteristics of the lithosphere. Overall my studies add to our understanding of regional tectonic deformation processes and the long-term behavior of sedimentary basins; they confirm other analyses that have pointed out that crustal heterogeneities in the continents result in diverse lithospheric thermal characteristics, which in turn results in higher complexity and variations of rheological behavior compared to oceanic domains with a thinner, more homogeneous crust. N2 - Die Rheologie ist die Wissenschaft, die sich mit dem Fließ- und Verformungsverhalten von Materie beschäftigt. Hierzu gehören neben Gasen und Flüssigkeiten vor allem auch Feststoffe, die einer Spannung ausgesetzt sind und einem daraus resultierenden Verformungsprozess unterliegen - entweder unter bruchhaften oder plastischen Bedingungen. In den Geowissenschaften umfasst die Rheologie die kombinierte Analyse tektonischer Spannungen und resultierender Deformationsphänomene in Gesteinen unter unterschiedlichen Temperatur- und Druckbedingungen sowie im Zusammenhang mit physikalischen Eigenschaften der Krusten- und Mantelgesteine. Die Verformung des lithosphärischen Mantels und der Kruste ist ein Schwerpunkt rheologischer Untersuchungen, denn in diesem Zusammenhang bilden sich Ozeanbecken und Gebirgsgürtel, die letztendlich aus dem komplexen Zusammenspiel der Bewegungen lithosphärischer Platten und der unterschiedlichen Deformierbarkeit von Krusten- und Mantelgesteinen unter dem Einfluss plattentektonischer Kräfte resultieren. Eine genaue Untersuchung der Festigkeit der Lithosphäre und der Deformationssphänomene erfordert daher eingehende Studien der rheologischen Eigenschaften der beteiligten Materialien. Vor diesem Hintergrund ist es das Ziel dieser Dissertation, die allgemeinen rheologischen Charakteristika der Lithosphäre in drei verschiedenen geodynamischen Bereichen zu analysieren, um unterschiedlich geprägte passive Kontinentalränder sowie das Verhalten von Transformstörungen innerhalb der Kontinente besser zu verstehen. Der wichtigste methodische Ansatz, der hierfür gewählt wurde, ist die numerische 3D-Modellierung, um eine Abschätzung des gegenwärtigen thermischen Feldes und der Festigkeit der Lithosphäre zu ermöglichen. Die räumliche Verteilung der Gesteinseigenschaften in Kruste und Mantel wird dabei durch 3-D-Strukturmodelle bereitgestellt, die als Grundlage für die thermische und rheologische Modellierung verwendet werden. Die Strukturmodelle basieren auf der Integration geophysikalischer und geologischer Daten, die zusätzlich durch eine 3D-Dichtemodellierung validiert werden. Um die thermischen und rheologischen Eigenschaften der Lithosphäre sowohl im ozeanischen als auch im kontinentalen Bereich zu entschlüsseln, wurden für diese Studie Sedimentbecken im Marmarameer im Bereich der kontinentalen Nordanatolischen Transformstörung sowie im Bereich der passiven Plattenränder von SW-Afrika (alte ozeanische Kruste) und vor Norwegen (junge ozeanische Kruste) ausgewählt. Das Marmarameer im Nordwesten der Türkei befindet sich in einer Region, wo die dextrale Nordanatolische Störung (NAFZ) die westwärts gerichtete Ausweichbewegung der Anatolischen Platte in Richtung Ägäis ermöglicht. Geophysikalische Beobachtungen deuten darauf hin, dass die kontinentale Kruste unter dem Marmara-Becken heterogen ist, allerdings stellt diese Arbeit zum ersten Mal eine detaillierte Charakterisierung dieser lateralen Krustenheterogenitäten vor. Hierzu verwende ich verschiedene Schweredaten und die Potenzialfeldmodellierung, um drei mögliche Szenarien zur Erklärung der Unterschiede im Charakter der Kruste vorzuschlagen. Die Modelle legen nahe, dass ausgeprägte Schwereanomalien im Becken von signifikanten Dichte-Heterogenitäten innerhalb der Kruste hervorgerufen werden. Die rheologische Modellierung zeigt, dass damit verbundene Unterschiede in der Festigkeit der Lithosphäre die mechanische Segmentierung der NAFZ steuern und sich auf seismogene Prozesse auswirken. Demnach korrelieren Krustenbereiche hoher Festigkeit, die mechanisch an den oberen Mantel gekoppelt sind, räumlich mit aseismischen Sektoren in der Region um die Störungszone, in denen sich das Streichen der NAFZ ändert. Zwischen den Bereichen mit den veränderten Streichrichtungen der Störung existieren dagegen mechanisch schwächere Krustenbereiche, die vom Mantel entkoppelt und durch Kriechbewegungen gekennzeichnet sind. Für die passiven Kontinentalränder von SW-Afrika und Norwegen wurden zwei veröffentlichte thermische 3-D-Modelle hinsichtlich des Einflusses der Temperaturverteilung auf die Festigkeit der Lithosphäre analysiert. Diese 3-D-Modelle differenzieren verschiedene Sediment-, Krusten- und Mantelbereiche und integrieren unterschiedliche geophysikalische Daten, wie zum Beispiel seismische Beobachtungen und Schwerefeldmessungen. Hier legt die rheologische Modellierung nahe, dass die derzeitige Lithosphärenfestigkeit im ozeanischen Bereich letztlich durch das Alter und vergangene thermische und tektonische Prozesse sowie die Tiefe der thermischen Grenze zwischen Lithosphäre und Asthenosphäre beeinflusst wird, während die Konfiguration der kristallinen Kruste das rheologische Verhalten der Lithosphäre in den kontinentalen Bereichen der beiden passiven Ränder dominiert. Die thermischen und rheologischen Modelle zeigen, dass die Variationen in der Festigkeit der Lithosphäre grundlegend von der Temperaturverteilung innerhalb der Lithosphäre selbst beeinflusst werden. Dabei steuert die Zusammensetzung der Lithosphäre das heutige thermische Feld entscheidend mit und darüber auch die rheologischen Eigenschaften der Lithosphäre. Diese Ergebnisse tragen somit zu einem besseren Verständnis regionaler tektonischer Deformationsprozesse und der dynamischen Langzeitentwicklung von Sedimentbecken bei; sie bestätigen außerdem frühere Analysen, die bereits darauf hingewiesen haben, dass die Heterogenität der Kruste in den Kontinenten mit unterschiedlichen thermischen Eigenschaften der Lithosphäre einhergeht, welches wiederum zu einer höheren Komplexität und Variabilität des rheologischen Verhaltens im Vergleich zu ozeanischen Gebieten mit einer geringer mächtigen, homogeneren Kruste führt. KW - Lithospheric strength KW - Thermal modeling KW - Rheological modeling KW - North Anatolian Fault Zone KW - Sea of Marmara KW - Passive margins KW - Lithosphärenfestigkeit KW - Nordanatolische Störungszone KW - Marmarameer KW - Passive Kontinentalränder KW - Thermische Modellierung KW - Rheologische Modellierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-511467 ER -