TY - JOUR A1 - Heit, Benjamin A1 - Yuan, Xiaohui A1 - Weber, Michael H. A1 - Geissler, Wolfram H. A1 - Jokat, Wilfried A1 - Lushetile, Bufelo A1 - Hoffmann, Karl-Heinz T1 - Crustal thickness and V-p/V-s ratio in NW Namibia from receiver functions: Evidence for magmatic underplating due to mantle plume-crust interaction JF - Geophysical research letters N2 - A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk V-p/V-s ratio by the H-k analysis of receiver functions. In the Damara Belt, the crustal thickness is similar to 35km with a V-p/V-s ratio of <1.75. The crust is similar to 30km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and V-p/V-s ratios are found at the landfall of the Walvis Ridge. Here and at similar to 150km northeast of the coast, the crustal thickness increases dramatically reaching 44km and the V-p/V-s ratios are extremely high (similar to 1.89). These anomalies are interpreted as magmatic underplating produced by the mantle plume during the breakup of Gondwana. The area affected by the plume is smaller than 300km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup. KW - crustal thickness KW - V-p KW - V-s ratios KW - magmatic underplating KW - Walvis Ridge KW - continental breakup Y1 - 2015 U6 - https://doi.org/10.1002/2015GL063704 SN - 0094-8276 SN - 1944-8007 VL - 42 IS - 9 SP - 3330 EP - 3337 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank A1 - Legendre, C. P. A1 - Geissler, Wolfram H. T1 - Tracing the influence of the trans-european suture zone into the mantle transition zone JF - Earth & planetary science letters N2 - Cratons with their thick lithospheric roots can influence the thermal structure, and thus the convective flow, in the surrounding mantle. As mantle temperatures are hard to measure directly, depth variations in the mantle transition zone (MTZ) discontinuities are often employed as a proxy. Here, we use a large new data set of P-receiver functions to map the 410 km and 660 km discontinuities beneath the western edge of the East European Craton and adjacent Phanerozoic Europe across the most fundamental lithospheric boundary in Europe, the Trans-European Suture Zone (TESZ). We observe significantly shorter travel times for conversions from both MTZ discontinuities within the craton, caused by the high velocities of the cratonic root. By contrast, the differential travel time across the MTZ is normal to only slightly raised. This implies that any insulating effect of the cratonic keel does not reach the MTZ. In contrast to earlier observations in Siberia, we do not find any trace of a discontinuity at 520 km depth, which indicates a rather dry MTZ beneath the western edge of the craton. Within most of covered Phanerozoic Europe, the MTZ differential travel time is remarkably uniform and in agreement with standard Earth models. No widespread thermal effects of the various episodes of Caledonian and Variscan subduction that took place during the amalgamation of the continent remain. Only more recent tectonic events, related to Alpine subduction and Quarternary volcanism in the Eifel area, can be traced. While the East European craton shows no distinct imprint into the MTZ, we discover the signature of the TESZ in the MTZ in the form of a linear region of about 350 km width with a 1.5 s increase in differential travel time, which could either be caused by high water content or decreased temperature. Taking into account results of recent S-wave tomographies, raised water content in the MTZ cannot be the main cause for this observation. Accordingly, we explain the increase, equivalent to a 15 km thicker MTZ, by a temperature decrease of about 80 K. We discuss two alternative models for this temperature reduction, either a remnant of subduction or an indication of downwelling due to small-scale, edge-driven convection caused by the contrast in lithospheric thickness across the TESZ. Any subducted lithosphere found in the MTZ at this location is unlikely to be related to Variscan subduction along the TESZ, though, as Eurasia has moved significantly northward since the Variscan orogeny. KW - mantle transition zone KW - Trans-European Suture Zone KW - East European Craton KW - edge-driven convection KW - receiver functions Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2012.12.028 SN - 0012-821X SN - 1385-013X VL - 363 SP - 73 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mrlina, Jan A1 - Kämpf, Horst A1 - Kroner, Corinna A1 - Mingram, Jens A1 - Stebich, Martina A1 - Brauer, Achim A1 - Geissler, Wolfram H. A1 - Kallmeyer, Jens A1 - Matthes, Heidrun A1 - Seidl, Michal T1 - Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys N2 - Based on results of previous investigations of tephra-tuff volcaniclastic deposits and a geophysical survey in the surroundings of the Zelezna hurka Quaternary volcano, West Bohemia, we performed detailed geophysical Surveys using gravimetry, magnetometry and electrical conductivity techniques. Striking anomalies were revealed in a morphological depression near Mytina, West Bohemia, as a strong evidence of the assumed maar-diatreme structure. The sharp isometric gravity low of -2.30 mGal, as well as the corresponding positive magnetic anomaly of 200 nT with a negative rim on its northern side indicate a steeply clipping geological body of low density and containing magnetic rocks/minerals. Magnetic survey also showed pronounced local anomalies outside the depression that can reflect relicts of the tephra rim of the maar. This geophysical evidence was then proven by an exploratory drilling near the centre of the gravity anomaly. Macroscopic on-site evaluation of the core, and more detailed sedimentological, petrochemical, palynological and microbiological laboratory analyses further confirmed the existence of a maar structure filled by 84 m of lake sediments reflecting a Succession of several warm and cold climatic periods. Results Of palynological analyses confirm the presence of a continuous palaeoclimate archive, with at least three successive warmer periods of most probably interstadial character from the upper Quaternary Saalian complex. Therefore. the recovered sediment sequence holds strong potential for in-depth palaeoclimate reconstruction and deep biosphere studies. At the bottom of the Mytina-1 (MY- 1) borehole (84-85.5 M), Country rock debris Was found, containing also volcanic bombs and lapilli. The discovered volcanic Structure is considered to be the first known Quaternary maar-diatreme volcano on the territory of the Bohemian Massif. Because of hidden active magmatic processes in combination with earthquake swarm seismicity ca. 20-30 km north of the Mytina maar, reconstruction of the palaeovolcanological evolution is important for evaluation of hazard potential of the NE and E Part of the Cheb Basin. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03770273 U6 - https://doi.org/10.1016/j.jvolgeores.2009.01.027 SN - 0377-0273 ER - TY - JOUR A1 - Knapmeyer-Endrun, Brigitte A1 - Krüger, Frank A1 - Geissler, Wolfram H. T1 - Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions JF - Earth & planetary science letters N2 - We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22 degrees E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases. KW - lithosphere-asthenosphere boundary KW - mid-lithospheric discontinuity KW - Lehmann discontinuity KW - S-receiver functions KW - Trans-European Suture Zone KW - East European Craton Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.11.011 SN - 0012-821X SN - 1385-013X VL - 458 SP - 429 EP - 441 PB - Elsevier CY - Amsterdam ER -