TY - THES A1 - Gebel, Arnd T1 - Postural control in youth: From performance to neural correlates T1 - Die posturale Kontrolle von Kindern und Jugendlichen: Von Gleichgewichtsleistung zu neuronalen Korrelaten N2 - Background and objectives: The intricate interdependencies between the musculoskeletal and neural systems build the foundation for postural control in humans, which is a prerequisite for successful performance of daily and sports-specific activities. Balance training (BT) is a well-established training method to improve postural control and its components (i.e., static/dynamic steady-state, reactive, proactive balance). The effects of BT have been studied in adult and youth populations, but were systematically and comprehensively assessed only in young and old adults. Additionally, when taking a closer look at established recommendations for BT modalities (e.g., training period, frequency, volume), standardized means to assess and control the progressive increase in exercise intensity are missing. Considering that postural control is primarily neuronally driven, intensity is not easy to quantify. In this context, a measure of balance task difficulty (BTD) appears to be an auspicious alternative as a training modality to monitor BT and control training progression. However, it remains unclear how a systematic increase in BTD affects balance performance and neurophysiological outcomes. Therefore, the primary objectives of the present thesis were to systematically and comprehensively assess the effects of BT on balance performance in healthy youth and establish dose-response relationships for an adolescent population. Additionally, this thesis aimed to investigate the effects of a graded increase in BTD on balance performance (i.e., postural sway) and neurophysiological outcomes (i.e, leg muscle activity, leg muscle coactivation, cortical activity) in adolescents. Methods: Initially, a systematic review and meta-analysis on the effects of BT on balance performance in youth was conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement guidelines. Following this complementary analysis, thirteen healthy adolescents (3 female/ 10 male) aged 16-17 years were enrolled for two cross-sectional studies. The participants executed bipedal balance tasks on a multidirectional balance board that allowed six gradually increasing levels of BTD by narrowing the balance boards’ base of support. During task performance, two pressure sensitive mats fixed on the balance board recorded postural sway. Leg muscle activity and leg muscle coactivation were assessed via electromyography while electroencephalography was used to monitor cortical activity. Results: Findings from the systematic review and meta-analysis indicated moderate-to-large effects of BT on static and dynamic balance performance in youth (static: weighted mean standardized mean differences [SMDwm] = 0.71; dynamic: SMDwm = 1.03). In adolescents, training-induced effects were moderate and large for static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance performance, respectively. Independently (i.e. modality-specific) calculated dose-response relationships identified a training period of 12 weeks, a frequency of two training sessions per week, a total of 24-36 sessions, a duration of 4-15 minutes, and a total duration of 31-60 minutes as the training modalities with the largest effect on overall balance performance in adolescents. However, the implemented meta-regression indicated that none of these training modalities (R² = 0%) could predict the observed performance-increasing effects of BT. Results from the first cross-sectional study revealed that a gradually increasing level of BTD caused increases in postural sway (p < 0.001; d = 6.36), higher leg muscle activity (p < 0.001; 2.19 < d < 4.88), and higher leg muscle coactivation (p < 0.001; 1.32 < d < 1.41). Increases in postural sway and leg muscle activity were mainly observed during low and high levels of task difficulty during continuous performance of the respective balance task. Results from the second cross-sectional study indicated frequency-specific increases/decreases in cortical activity of different brain areas (p < 0.005; 0.92 < d < 1.80) as a function of BTD. Higher cortical activity within the theta frequency band in the frontal and central right brain areas was observed with increasing postural demands. Concomitantly, activity in the alpha-2 frequency band was attenuated in parietal brain areas. Conclusion: BT is an effective method to increase static and dynamic balance performance and, thus, improve postural control in healthy youth populations. However, none of the reported training modalities (i.e., training period, frequency, volume) could explain the effects on balance performance. Furthermore, a gradually increasing level of task difficulty resulted in increases in postural sway, leg muscle activity, and coactivation. Frequency and brain area-specific increases/decreases in cortical activity emphasize the involvement of frontoparietal brain areas in regulatory processes of postural control dependent on BTD. Overall, it appears that increasing BTD can be easily accomplished by narrowing the base of support. Since valid methods to assess and quantify BT intensity do not exist, increasing BTD appears to be a very useful candidate to implement and monitor progression in BT programs in healthy adolescents. N2 - Hintergrund und Ziele: Die postural Kontrolle des Menschen basiert auf der komplexen Interaktion von muskuloskelettalem und neuralem System. Gleichzeitig bildet sie eine Grund-voraussetzung für die erfolgreiche Ausführung von sport-spezifischen Aktivitäten sowie denen des täglichen Lebens. Das Gleichgewichtstraining ist eine gut etablierte Trainingsmetho-de, welche der Verbesserung der posturalen Kontrolle und seiner Komponenten (statisch/dynamisch-kontinuierliches, reaktives, proaktives Gleichgewicht) dient. Die Effekte dieser Trainingsmethode wurden bereits bei gesunden jungen und älteren Erwachsenen sys-tematisch untersucht, wurde aber bisher bei Kindern und Jugendlichen versäumt. Bei genauerer Betrachtung der gängigen Trainingsempfehlungen zur Ausgestaltung der Trainingsvariablen (z.B., Dauer, Frequenz, Umfang) für das Gleichgewichtstraining fällt auf, dass momentan keine standardisierte Methode existiert, welche es ermöglicht die Intensität des Gleichgewichtstrainings zu erfassen. Da die posturale Kontrolle primär neuronal gesteuert ist, lässt sich die Intensität einzelner Gleichgewichtsübungen bzw. eines ganzen Trainings schwer bestimmen. Der Schwierigkeitsgrad einer Gleichgewichtsaufgabe könnte daher eine aussichtsreiche Alternative als Trainingsvariable zur Steuerung der Trainingsbelastung im Rahmen des Gleichgewichtstrainings sein. Bisher ist jedoch unklar wie sich eine graduelle Steigerung der Aufgabenschwierigkeit auf die Gleichgewichtsleistung sowie neurophysiologische Parameter auswirkt. Das primäre Ziel dieser Doktorarbeit ist es daher, die Effekte des Gleichgewichtstrainings auf die Gleichgewichtsleistung von gesunden Kindern und Jugendlichen systematisch zu untersuchen und zu aggregieren sowie entsprechende Dosis-Wirkungs-Verhältnisse für Jugendliche herauszuarbeiten. Des Weiteren soll der Einfluss einer graduellen Steigerung des Schwierigkeitsgrades einer Gleichgewichtsaufgabe auf die Gleichgewichtsleistung (d.h., posturale Schwankung) sowie neurophysiologische Parameter (d.h., Aktivität und Koaktivität der Beinmuskulatur, kortikale Aktivität) von Jugendlichen untersucht werden. Methoden: Zu Beginn wurde ein systematischer Überblicksbeitrag mit Meta-Analyse angefertigt, welcher, basierend auf den PRISMA Richtlinien, die Effekte des Gleichgewichtstrainings auf die Gleichgewichtsleistung von Kindern und Jugendlichen zusammenfasste und quantifizierte. Im Anschluss an diese Übersichtsarbeit wurden zwei Querschnittsuntersuchungen durchgeführt. An beiden Untersuchungen nahmen 13 gesunde Jugendliche im Alter von 16 – 17 Jahren (3 weiblich/ 10 männlich) teil. Im Rahmen der experimentellen Untersuchung führten die Jugendlichen eine Gleichgewichtsaufgabe in bipedalem Stand auf einem multidirektionalen Balance Board aus. Der Schwierigkeitsgrad der Gleichgewichtsaufgabe wurde hierbei mittels Verkleinerung der Unterstützungsfläche des Balance Boards über sechs Stufen graduell gesteigert. Während der Aufgabenausführung wurde die posturale Schwankung mittels zweier drucksensitiver Messmatten erfasst. Die Beinmuskelaktivität und -koaktivität sowie die kortikale Aktivität wurden mittels Elektromyographie beziehungsweise Elektroenzephalographie aufgenommen. Ergebnisse: Insgesamt hat Gleichgewichtstraining einen moderaten bis großen Einfluss auf die statische und dynamische Gleichgewichtsleistung von Kindern und Jugendlichen (statisch: gewichtete mittlere standardisierte Mittelwertsdifferenz [SMDwm] = 0,71; dynamisch: SMDwm = 1,03). Eine altersspezifische Subgruppenanalyse für Jugendliche wies mittlere Trainingseffekte für das statische (SMDwm = 0,61) sowie große für das dynamische Gleich-gewicht (SMDwm = 0,86) aus. Unabhängig (d.h., für jede Trainingsvariable spezifisch) berechnete Dosis-Wirkungs-Beziehungen zeigten, dass eine Interventionsdauer von 12 Wochen, eine Trainingsfrequenz von zwei Einheiten pro Woche, eine Anzahl von 24 – 36 Trainings-einheiten, eine Dauer von 4 – 15 Minuten pro Einheit sowie eine wöchentliche Gesamttrainingszeit von 31 – 60 Minuten den größten Einfluss auf die Gleichgewichtsleistung von Jugendlichen hatten. Die zusätzlich durchgeführte Metaregression zeigte, dass keine der untersuchten Trainingsvariablen (R² = 0%) die leistungssteigernden Effekte des Gleichgewichtstrainings vorhersagen konnte. In Bezug auf die Daten der ersten Querschnittsstudie ergab die statistische Analyse, dass ein gradueller Anstieg des Schwierigkeitsgrades der Gleichgewichtsaufgabe zu einem Anstieg der posturalen Schwankungen (p < 0,001; d = 6,36), höherer Aktivität der Beinmuskulatur (p < 0,001; 2,19 < d < 4,88) sowie höherer Koaktivität der Beinmuskulatur (p < 0,001; 1,32 < d < 1,41). Während der Ausführung der Gleichgewichtsaufgabe mit ansteigendem Schwierig-keitsgrad war die Zunahme der posturalen Schwankungen und der Aktivität der Beinmuskulatur primär zwischen niedrigen und hohen Schwierigkeitsgraden zu beobachten. Die Ergebnisse der zweiten Querschnittsstudie zeigten, dass ein gradueller Anstieg des Schwierigkeitsgrades der Gleichgewichtsaufgabe einen frequenzspezifischen Anstieg bzw. Abfall der kortikalen Aktivität (p < 0,005; 0,92 < d < 1,80) in verschiedenen Hirnarealen zur Folge hat. Auf kortikaler Ebene nahm die Aktivität innerhalb der Thetafrequenz in frontalen und zentralen Hirnarealen mit höheren posturalen Anforderungen zu. Die Aktivität in der Alpha-2-Frequenz nahm hingegen gleichzeitig in parietalen Hirnarealen ab. Fazit: Gleichgewichtstraining ist eine effektive Methode, um die statische und dynamische Gleichgewichtsleistung und somit die postural Kontrolle von Kindern und Jugendlichen zu verbessern. Dennoch konnte keine der untersuchten Trainingsvariablen (d.h., Dauer, Frequenz, Umfang) die trainingsinduzierten Effekte auf die Gleichgewichtsleistung erklären. Die im Rahmen der Querschnittsuntersuchungen beobachteten Anstieg der posturalen Schwankung sowie der Aktivität und Koaktivität der Beinmuskulatur waren auf den Anstieg des Schwierigkeitsgrades der Gleichgewichtsaufgabe zurückzuführen. Gleichzeitig deuten die auf bestimmte Hirnareale begrenzte frequenzspezifischen Anstiege bzw. Abfälle der kortikalen Aktivität die Beteiligung frontoparietaler Areale bei regulatorischen Prozessen der posturalen Kontrolle bei ansteigender Aufgabenschwierigkeit an. Somit lässt sich konstatieren, dass die Steigerung des Schwierigkeitsgrades einer Gleichgewichtsaufgabe mittels Verkleinerung der Unterstützungsfläche leicht umgesetzt werden kann. Da es bis dato keine valide Methode zur Erfassung der Intensität eines Gleichgewichtstrainings gibt, erscheint die Steigerung der Aufgabenschwierigkeit als praktische Alternative, um Progression in Gleichgewichtstrainingsinterventionen bei gesunden Jugendlichen quantifizieren und implementierern zu können. KW - postural sway KW - muscle activity KW - cortical activity KW - balance trainin KW - task difficulty KW - postural Schwankung KW - Muskelaktivität KW - kortikale Aktivität KW - Gleichgewichtstraining KW - Aufgabenschwierigkeit Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-533034 ER - TY - GEN A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 3 KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484130 IS - 3 ER - TY - JOUR A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study JF - Sensors N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - https://doi.org/10.3390/s20185104 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - GEN A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 793 KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564419 SN - 1866-8364 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults JF - Frontiers in Human Neuroscience N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - https://doi.org/10.3389/fnhum.2022.871930 SN - 1662-5161 VL - 16 SP - 1 EP - 14 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - GEN A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 583 KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439211 SN - 1866-8364 IS - 583 ER - TY - JOUR A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents JF - Frontiers in Physiology N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01135 SN - 1664-042X VL - 10 IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Gebel, Arnd A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Effects and dose-response relationship of balance training on balance performance in Youth BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0926-0 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 9 SP - 2067 EP - 2089 PB - Springer CY - Northcote ER - TY - GEN A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 563 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435972 SN - 1866-8364 IS - 563 ER - TY - JOUR A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael Armin A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults JF - Neural Plasticity N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. Y1 - 2019 U6 - https://doi.org/10.1155/2019/9478656 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - New York ER -