TY - JOUR A1 - Gao, Mingxing A1 - Zeilinger, Gerold A1 - Xu, Xiwei A1 - Wang, Qingliang A1 - Hao, Ming T1 - DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China JF - Geomorphology : an international journal on pure and applied geomorphology N2 - The northeastern margin of the Tibetan Plateau is a tectonically active region consisting of a series of faults with bounded intermountain basins and is located in the transition zone between the Tibetan Plateau and the Loess Plateau. Active deformation that may affect the topography in this region can be quantified using geomorphic indices. Therefore, we applied geomorphic indices such as the hypsometric integral and the stream length gradient index to infer neo-tectonics in the northeastern margin of the Tibetan Plateau. Different time-scaled geodetic leveling data and river incision rates were also integrated into the investigation. The results show that the hypsometric integrals are not significantly affected by lithology but spatially correspond to the hanging walls of thrust faults. The hypsometric integrals are also positively correlated with the leveling data. Although the stream length gradient index is influenced by lithology, its most pronounced anomalies of the stream length gradient are associated with the thrust faults. Consequently, the uplift in the northeast margin of the Tibetan Plateau appeared to be concentrated along the hanging walls of the thrust faults. KW - Tectonic geomorphology KW - Hypsometry analysis KW - Stream length gradient KW - Active tectonics KW - Leveling data KW - Tibetan Plateau Y1 - 2013 U6 - https://doi.org/10.1016/j.geomorph.2013.02.008 SN - 0169-555X VL - 190 IS - 20 SP - 61 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gao, Mingxing A1 - Zeilinger, Gerold A1 - Xu, Xiwei A1 - Tan, Xibin A1 - Wang, Qingliang A1 - Hao, Ming T1 - Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China JF - Tectonics N2 - We applied the geomorphic indices (hypsometry and stream length gradient) to evaluate the differential uplift of the central and southern Longmenshan, a mountain range characterized by rapid erosion, strong tectonic uplift, and devastating seismic hazards. The results of the geomorphic analysis indicate that the Beichuan-Yingxiu fault and the Shuangshi-Dachuan fault act as major tectonic boundaries separating areas experiencing rapid uplift from slow uplift. The results of the geomorphic analysis also suggest that the Beichuan-Yingxiu fault is the most active fault with the largest relative uplift rates compared to the rest of the faults in the Longmenshan fault system. We compared reflected relative uplift rates based on the hypsometry and stream length gradient indices with geological/geodetic absolute rates. Along-strike and across-strike variations in the hypsometry and stream length gradient correlate with the spatial patterns derived from the apatite fission track exhumation rates, the leveling-derived uplift rate, and coseismic vertical displacements during the 2008 Wenchuan earthquake. These data defined multiple fault relationships in a complex thrust zone and provided geomorphic evidence to evaluate the potential seismic hazards of the southern Longmenshan range. Y1 - 2016 U6 - https://doi.org/10.1002/2015TC004080 SN - 0278-7407 SN - 1944-9194 VL - 35 SP - 1812 EP - 1826 PB - American Geophysical Union CY - Washington ER -