TY - JOUR A1 - Frasca, Stefano A1 - von Graberg, Till A1 - Feng, Jiu-Ju A1 - Thomas, Arne A1 - Smarsly, Bernd M. A1 - Weidinger, Inez M. A1 - Scheller, Frieder W. A1 - Hildebrandt, Peter A1 - Wollenberger, Ursula T1 - Mesoporous indium tin oxide as a novel platform for bioelectronics N2 - Stable immobilization and reversible electrochemistry of cytochrome c in a tranparent indium tin oxide film with a well-defined mesoporosity (mpITO) is demonstrated. the transparency and good conductivity, in combination with the large surface area of mpITO, allow the incorporation of a high amount of elelctroactive biomolecules and their electrochemical and spectroscopic investigation. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry are employed for the characterization of cytochrome c immobilized in the mpITO and reveal no perturbant of the structural of the integrity of the redox protein. The potential of this modified material as a biosensor detection of superoxide anions is also demonstrated. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/122208635/home U6 - https://doi.org/10.1002/cctc.201000047 SN - 1867-3880 ER - TY - JOUR A1 - Frasca, Stefano A1 - Richter, Claudia A1 - von Graberg, Till A1 - Smarsly, Bernd M. A1 - Wollenberger, Ursula T1 - Electrochemical switchable protein-based optical device JF - Engineering in life sciences : Industry, Environment, Plant, Food N2 - The present work contributes to the development of reusable sensing systems with a visual evaluation of the detection process related to an analyte. An electrochemical switchable protein-based optical device was designed with the core part composed of cytochrome c immobilized in a mesoporous indium tin oxide film. A color-developing redox-sensitive dye was used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemically reset the system to the initial state and repetitive signal generation. The implemented reset function of the color forming reaction will make calibration of small test devices possible. The principle can be extended to other color forming redox reactions and to coupled enzyme systems, such as rapid food testing and indication of critical concentrations of metabolites for health care. KW - Cytochrome c KW - Electrochemical switch KW - Indium tin oxide KW - mesoporous materials KW - Optical device Y1 - 2011 U6 - https://doi.org/10.1002/elsc.201100079 SN - 1618-0240 VL - 11 IS - 6 SP - 554 EP - 558 PB - Wiley-Blackwell CY - Malden ER -