TY - JOUR A1 - Belasri, Khadija A1 - Topal, Leila A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Fulop, Ferenc A1 - Szatmari, Istvan T1 - Synthesis and conformational analysis of naphthoxazine-fused phenanthrene derivatives JF - Molecules N2 - The synthesis of new phenanthr[9,10-e][1,3]oxazines was achieved by the direct coupling of 9-phenanthrol with cyclic imines in the modified aza-Friedel-Crafts reaction followed by the ring closure of the resulting bifunctional aminophenanthrols with formaldehyde. Aminophenanthrol-type Mannich bases were synthesised and transformed to phenanthr[9,10-e][1,3]oxazines via [4 + 2] cycloaddition. Detailed NMR structural analyses of the new polyheterocycles as well as conformational studies including Density Functional Theory (DFT) modelling were performed. The relative stability of ortho-quinone methides (o-QMs) was calculated, the geometries obtained were compared with the experimentally determined NMR structures, and thereby, the regioselectivity of the reactions has been assigned. KW - modified Mannich reaction KW - cyclic imines KW - [4+2] cycloaddition KW - NMR KW - spectroscopy KW - conformational analysis KW - DFT calculations Y1 - 2020 U6 - https://doi.org/10.3390/molecules25112524 SN - 1420-3049 VL - 25 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Csütörtöki, Renata A1 - Szatmari, Istvan A1 - Koch, Andreas A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich A1 - Fulop, Ferenc T1 - Syntheses and conformational analyses of new naphth[1,2-e][1,3]oxazino[3,2-c] quinazolin-13-ones JF - Tetrahedron N2 - The syntheses of naphth[1,2-e][1,3]oxazino[3,2-c]quinazolin-13-one derivatives (3a-f) were achieved by the solvent-free heating of benzyloxycarbonyl-protected intermediates (2a-f) with MeONa. For intermediates 2a-f, prepared by the reactions of substituted aminonaphthols with benzyl N-(2-formylphenyl)carbamate, not only the expected trans ring form B and chain form A(1), but also the rearranged chain form A(2) as a new tautomer were detected in DMSO at room temperature. The quantity of A(2) in the tautomeric mixture was changed with time. Conformational analyses of the target heterocycles 3a-f by NMR spectroscopy and accompanying theoretical calculations at the DFT level of theory revealed that the oxazine ring preferred a twisted chair conformation and the quinazolone ring was planar. Besides the conformations, both the configurations at C-7a and C-15 and the preferred rotamers of the 1-naphthyl substituent at C-15 were assigned, which allowed evaluation of the aryl substituent-dependent steric hindrance in this part of the molecules. Configurational assignments were corroborated by quantifying the ring current effect of 15-aryl in terms of spatial NICS. KW - Naphthoxazinoquinazolinones KW - Aminonaphthols KW - NMR spectroscopy KW - Conformational analysis KW - Theoretical calculations KW - Ring current effect Y1 - 2012 U6 - https://doi.org/10.1016/j.tet.2012.04.026 SN - 0040-4020 VL - 68 IS - 24 SP - 4600 EP - 4608 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Csütörtöki, Renáta A1 - Szatmári, István A1 - Koch, Andreas A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich A1 - Fulop, Ferenc T1 - Synthesis and conformational analysis of new naphth[1,2-e][1,3]oxazino[3,4-c]quinazoline derivatives Y1 - 2011 SN - 0040-4020 ER - TY - JOUR A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Klod, Sabrina A1 - Szatmari, Istvan A1 - Fulop, Ferenc A1 - Kleinpeter, Erich T1 - Synthesis and conformational analysis of naphth[1', 2':5,6][1,3]oxazino[3,2-c][1,3]benzoxazine and naphth[1', 2':5,6][1,3]oxazino[3,4-c][1,3]benzoxazine derivatives JF - Tetrahedron N2 - A new functional group, the hydroxy group, was inserted into a Betti base by reaction with salicylaldehyde, and the naphthoxazine derivatives thus obtained were converted by ring-closure reactions with formaldehyde, acetaldehyde, propionaldehyde or phosgene to the corresponding naphth[1',2':5,6][1,3]oxazino[3,2-c][1,3]benzoxazine derivatives. Further, the conformational analysis of these polycyclic compounds by NMR spectroscopy and an accompanying molecular modelling are reported; especially, both quantitative anisotropic ring current effects of the aromatic moieties in these compounds and steric substituent effects were employed to determine the stereochemistry of the naphthoxazinobenzoxazine derivatives. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/00404020 U6 - https://doi.org/10.1016/j.tet.2006.09.037 SN - 0040-4020 VL - 62 IS - 48 SP - 11081 EP - 11089 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Szatmári, István A1 - Fulop, Ferenc A1 - Kleinpeter, Erich T1 - Synthesis and conformational analysis of naphth[1,2-e][1,3]oxazino[4,3-a][1,3]isoquinoline and naphth[2,1- e][1,3]oxazino[4,3-a]isoquinoline derivatives N2 - Through the cyclization of 1-(;-hydroxynaphthyl)-1,2,3,4-tetrahydroisoquinoline and 1-(;- hydroxynaphthyl)-1,2,3,4-tetrahydroisoquinoline with formaldehyde, phosgene, p-nitrobenzaldehyde or p-chlorophenyl isothiocyanate, 8-substituted 10,11-dihydro-8H,15bH-naphth[1,2-e][1,3]oxazino[4,3-a]isoquinolines (3 and 4) and 10,11- dihydro-8H,15bH-naphth[2,1-e][1,3]oxazino[4,3-a]isoquinolines (15 and 16) were prepared. Conformational analysis of both the piperidine and the 1,3-oxazine moieties of these heterocycles by NMR spectroscopy and an accompanying theoretical study revealed that these two conformationally flexible six-membered ring moieties prefer twisted chair conformers. Y1 - 2008 UR - http://www.sciencedirect.com/science/article/pii/S0040402008009150 U6 - https://doi.org/10.1016/j.tet.2008.05.025 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Csütörtöki, Renáta A1 - Szatmári, István A1 - Heydenreich, Matthias A1 - Koch, Andreas A1 - Starke, Ines A1 - Fulop, Ferenc T1 - Novel piperidine-fused benzoxazino- and quinazolinonaphthoxazines-synthesis and conformational study N2 - The reactions of 1-(amino(2-hydroxyphenyl)methyl)-2-naphthol (3) and 1-(amino(2-aminophenyl)methyl)-2-naphthol (6) with glutardialdehyde resulted in the formation of piperidine-fused benzoxazinonaphthoxazine 4 and quinazolinonaphthoxazine 7, respectively, both in diastereopure form. The full conformational search protocols of 4 and 7 were successfully carried out by NMR spectroscopy and accompanying molecular modelling; the global minimum-energy conformers of all diastereomers were computed, and the assignments of the most stable stereoisomers, Gtct1 for 4 and Gtct1 for 7, were corroborated by spatial NOE information relating to the H7a-H10a-H15b and H,H coupling patterns of the protons in the flexible part of the piperidine moiety. Additionally, mass spectrometric fragmentation was investigated in collision-induced dissociation experiments. The elemental compositions of the ions were determined by accurate mass measurements. Y1 - 2012 SN - 0040-4020 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Csütörtöki, Renáta A1 - Szatmári, István A1 - Koch, Andreas A1 - Fulop, Ferenc T1 - Syntheses and conformational analyses of new naphth[1,2-e][1,3]oxazino[3,2-c]quinazolin-13-ones N2 - The syntheses of naphth[1,2-e][1,3]oxazino[3,2-c]quinazolin-13-one derivatives (3a-f) were achieved by the solvent-free heating of benzyloxycarbonyl-protected intermediates (2a-f) with MeONa. For intermediates 2a-f, prepared by the reactions of substituted aminonaphthols with benzyl N-(2-formylphenyl)carbamate, not only the expected trans ring form B and chain form A1, but also the rearranged chain form A2 as a new tautomer were detected in DMSO at room temperature. The quantity of A2 in the tautomeric mixture was changed with time. Conformational analyses of the target heterocycles 3a-f by NMR spectroscopy and accompanying theoretical calculations at the DFT level of theory revealed that the oxazine ring preferred a twisted chair conformation and the quinazolone ring was planar. Besides the conformations, both the configurations at C-7a and C-15 and the preferred rotamers of the 1-naphthyl substituent at C-15 were assigned, which allowed evaluation of the aryl substituent-dependent steric hindrance in this part of the molecules. Configurational assignments were corroborated by quantifying the ring current effect of 15-aryl in terms of spatial NICS. Y1 - 2012 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Szatmári, István A1 - Lázár, László A1 - Koch, Andreas A1 - Heydenreich, Matthias A1 - Fulop, Ferenc T1 - Visualization and quantification of anisotropic effects on the 1H NMR spectra of 1,3-oxazino[4,3- alpha]isoquinolines - indirect estimates of steric compression N2 - The anisotropic effects of the phenyl, alpha- and beta-naphthyl moieties in four series of 1,3-oxazino[4,3- a]isoquinolines on the H-1 chemical shifts of the isoquinoline protons were calculated by employing the Nucleus Independent Chemical Shift (NICS) concept and Visualized as anisotropic cones by a through-space NMR shielding grid. The signs and extents of these spatial effects on the H-1 chemical shifts of the isoquinoline protons were compared with the experimental H-1 NMR spectra. The differences between the experimental delta (H-1)/ppm values and the calculated anisotropic effects of the aromatic moieties are discussed in terms of the steric compression that occurs in the Compounds studied. Y1 - 2009 U6 - https://doi.org/10.1016/j.tet.2009.07.038 SN - 0040-4020 ER - TY - JOUR A1 - Lämmermann, Anica A1 - Szatmári, István A1 - Fulop, Ferenc A1 - Kleinpeter, Erich T1 - Inter- or intramolecular N···H-O or N-H···O Hydrogen bonding in 1,3-Amino-alpha/beta-naphthols : an experimental NMR and computational study N2 - The existence of intermolecular or intramolecular N···H;O or N;H···O hydrogen bonding in three series (series 1, substituted 1-aminoalkyl-2-naphthols: R = H, Me, Et, Pr, i-Pr; series 2, substituted 1-;- aminobenzyl-2-naphthols: H, p-OMe, p-F, p-Cl, p-Br, p-NO2, p-Me; series 3, substituted 2-;-aminobenzyl-1-naphthols: R = H, p-Me, p-F, p-Br, p-OMe, m-NO2, m-Br) are studied by NMR spectroscopy and computed at the DFT level of theory [B3LYP/6-311+G(d,p)]. The correct nature of the H-bond was assigned unequivocally both experimentally and computationally by potential energy scans rotating the involved dihedral angles. We investigated the effects of substituents on the strength of the H-bond by evaluating the corresponding hyperconjugative stabilization energy nlonepair ; ;*X;H and Hammett substituent constant plots. By this means, steric and electronic substituent effects could be easily quantified and separated. Y1 - 2009 UR - http://pubs.acs.org/journal/jpcafh U6 - https://doi.org/10.1021/Jp902731n SN - 1089-5639 ER - TY - JOUR A1 - Neuvonen, Helmi A1 - Fulop, Ferenc A1 - Neuvonen, Kari A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Electronic effects of heterocyclic ring systems as evaluated with the aid of 13C and 15N NMR chemical shifts and NBO analysis N2 - The electronic effects of the 5- and 6-membered heterocyclic rings on the C=N-N unit of five different hydrazone derivatives of pyridine-2-, -3- and -4-carbaldehydes, pyrrole-2-carbaldehyde, furan-2- and -3-carbaldehydes and thiophene-2- and -3-carbaldehydes have been studied with the aid of 13C and 15N NMR measurements together with the natural bond orbital (NBO) analysis. As model compounds are used the corresponding substituted benzaldehyde derivatives. The polarization of the C=N unit of the hydrazone functionality of the heteroaryl derivatives occurs in an analogous manner with that of phenyl derivatives. The electron-withdrawing heteroaryl groups destabilize and the electron-donating groups stabilize the positive charge development at the CN carbon while the effect on the negative charge development is opposite. The 15N NMR chemical shift of the C=N and C=N-N nitrogens and the NBO charges at C=N-N unit can be correlated with the replacement substituent constants of the heteroaryl groups. 13C NMR shifts of the C=N carbon of N,N- dialkylhydrazones of the heteroarenecarbaldehydes can be correlated with a dual parameter equation possessing the polar substituent constant ;* of the heteroaryl group and the electronegativity of the heteroatom as variables. Y1 - 2008 UR - http://onlinelibrary.wiley.com/doi/10.1002/poc.1271/pdf U6 - https://doi.org/10.1002/Poc.1271 ER -