TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Ertan, Emelie A1 - Couto, Rafael C. A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Guimaraes, Freddy F. A1 - Ågren, Hans A1 - Odelius, Michael A1 - Föhlisch, Alexander A1 - Kimberg, Victor T1 - A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp01215b SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 19573 EP - 19589 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Vaz da Cruz, Vinicius A1 - Ertan, Emelie A1 - Couto, Rafael C. A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Guimarães, Freddy F. A1 - Ågren, Hans A1 - Gel'mukhanov, Faris A1 - Odelius, Michael A1 - Föhlisch, Alexander A1 - Kimberg, Victor T1 - A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 781 KW - raman-scattering KW - vibrational structure KW - fast dissociation KW - auger spectrum KW - liquid water KW - spectroscopy KW - emission KW - collapse KW - states KW - vapor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436901 SN - 1866-8372 IS - 781 SP - 19573 EP - 19589 ER - TY - JOUR A1 - Yin, Zhong A1 - Inhester, Ludger A1 - Veedu, Sreevidya Thekku A1 - Quevedo, Wilson A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Groenhof, Gerrit A1 - Föhlisch, Alexander A1 - Grubmueller, Helmut A1 - Techert, Simone T1 - Cationic and Anionic Impact on the Electronic Structure of Liquid Water JF - The journal of physical chemistry letters N2 - Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs significantly from that of bulk water. Ion-specific effects are identified by fingerprint features in the water X-ray emission spectra. While Mg2+ ions cause a bathochromic shift of the water lone pair orbital, the 3p orbital of the Cl- ions causes an additional peak in the water emission spectrum at around 528 eV. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01392 SN - 1948-7185 VL - 8 SP - 3759 EP - 3764 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Gel’mukhanov, Faris T1 - Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open. KW - structure of water KW - X-ray spectroscopy KW - continuous distribution model Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1815701116 SN - 0027-8424 VL - 116 IS - 10 SP - 4058 EP - 4063 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Pietzsch, Annette A1 - Niskanen, Johannes A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Jay, Raphael Martin A1 - Lu, Xingye A1 - McNally, Daniel A1 - Schmitt, Thorsten A1 - Föhlisch, Alexander T1 - Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering. KW - water KW - potential ene rgy surface KW - RIXS Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2118101119 SN - 1091-6490 VL - 119 IS - 28 PB - National Acad. of Sciences CY - Washington, DC ER - TY - GEN A1 - Niskanen, Johannes A1 - Kooser, Kuno A1 - Koskelo, Jaakko A1 - Käämbre, Tanel A1 - Kunnus, Kristjan A1 - Pietzsch, Annette A1 - Quevedo, Wilson A1 - Hakala, Mikko A1 - Föhlisch, Alexander A1 - Huotari, Simo A1 - Kukk, Edwin T1 - Density functional simulation of resonant inelastic X-ray scattering experiments in liquids: acetonitrile N2 - In this paper we report an experimental and computational study of liquid acetonitrile (H3C–C[triple bond, length as m-dash]N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H2C–C[double bond, length as m-dash]NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 331 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395133 ER - TY - JOUR A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Kunnus, Kristjan A1 - Kennedy, Brian A1 - Quevedo, Wilson A1 - Miedema, Piter S. A1 - Wernet, Philippe A1 - Föhlisch, Alexander T1 - Dynamics of the OH group and the electronic structure of liquid alcohols JF - Structural dynamics N2 - In resonant inelastic soft x-ray scattering (RIXS) from molecular and liquid systems, the interplay of ground state structural and core-excited state dynamical contributions leads to complex spectral shapes that partially allow for ambiguous interpretations. In this work, we dissect these contributions in oxygen K-edge RIXS from liquid alcohols. We use the scattering into the electronic ground state as an accurate measure of nuclear dynamics in the intermediate core-excited state of the RIXS process. We determine the characteristic time in the core-excited state until nuclear dynamics give a measurable contribution to the RIXS spectral profiles to tau(dyn) = 1.2 +/- 0.8 fs. By detuning the excitation energy below the absorption resonance we reduce the effective scattering time below sdyn, and hence suppress these dynamical contributions to a minimum. From the corresponding RIXS spectra of liquid methanol, we retrieve the "dynamic-free" density of states and find that it is described solely by the electronic states of the free methanol molecule. From this and from the comparison of normal and deuterated methanol, we conclude that the split peak structure found in the lone-pair emission region at non-resonant excitation originates from dynamics in the O-H bond in the core-excited state. We find no evidence that this split peak feature is a signature of distinct ground state structural complexes in liquid methanol. However, we demonstrate how changes in the hydrogen bond coordination within the series of linear alcohols from methanol to hexanol affect the split peak structure in the liquid alcohols. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. Y1 - 2014 U6 - https://doi.org/10.1063/1.4897981 SN - 2329-7778 VL - 1 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Liu, Chun-Yu A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Decker, Régis A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Excited-state exchange interaction in NiO determined by high-resolution resonant inelastic x-ray scattering at the Ni M2,3 edges JF - Physical review : B, Condensed matter and materials physics N2 - The electronic and magnetic excitations of bulk NiO have been determined using the 3A2g to 3T2g crystal-field transition at the Ni M2,3 edges with resonant inelastic x-ray scattering at 66.3- and 67.9-eV photon energies and 33-meV spectral resolution. Unambiguous assignment of the high-energy side of this state to a spin-flip satellite is achieved. We extract an effective exchange field of 89±4 meV in the 3T2g excited final state from empirical two-peak spin-flip model. The experimental data is found consistent with crystal-field model calculations using exchange fields of 60–100 meV. Full agreement with crystal-field multiplet calculations is achieved for the incident photon energy dependence of line shapes. The lower exchange parameter in the excited state as compared to the ground-state value of 120 meV is discussed in terms of the modification of the orbital occupancy (electronic effects) and of the structural dynamics: (A) With pure electronic effects, the lower exchange energy is attributed to the reduction in effective hopping integral. (B) With no electronic effects, we use the S = 1 Heisenberg model of antiferromagnetism to derive a second-nearest-neighbor exchange constant J2 = 14.8±0.6 meV. Based on the linear correlation between J2 and the lattice parameter from pressure-dependent experiments, an upper limit of 2% local Ni-O bond elongation during the femtosecond scattering duration is derived. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.035104 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 3 PB - American Physical Society CY - Ridge, NY ER - TY - JOUR A1 - Eckert, Sebastian A1 - Mascarenhas, Eric Johnn A1 - Mitzner, Rolf A1 - Jay, Raphael Martin A1 - Pietzsch, Annette A1 - Fondell, Mattis A1 - Vaz da Cruz, Vinicius A1 - Föhlisch, Alexander T1 - From the free ligand to the transition metal complex BT - FeEDTA(-) formation seen at ligand K-Edges JF - Inorganic chemistry N2 - Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal- ligand bond formation are probed through distinct spectroscopic signatures. KW - Energy KW - Ligands KW - Metals KW - Nitrogen KW - Oxygen Y1 - 2022 U6 - https://doi.org/10.1021/acs.inorgchem.2c00789 SN - 0020-1669 SN - 1520-510X VL - 61 IS - 27 SP - 10321 EP - 10328 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Kennedy, Brian A1 - Sathe, Conny A1 - Miedema, Piter S. A1 - Techert, Simone A1 - Strocov, Vladimir N. A1 - Schmitt, Thorsten A1 - Hennies, Franz A1 - Rubensson, Jan-Erik A1 - Föhlisch, Alexander T1 - Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering JF - Scientific reports N2 - Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. Y1 - 2016 U6 - https://doi.org/10.1038/srep20054 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Mascarenhas, Eric Johnn A1 - Pietzsch, Annette A1 - Vaz da Cruz, Vinícius A1 - Föhlisch, Alexander T1 - How hydrogen bonding amplifies isomeric differences in pyridones toward strong changes in acidity and tautomerism JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - Steric hindrance of hydration and hydrogen bond enhancement by localized charges have been identified as key factors for the massive chemical differences between the hydroxypyridine/pyridone isomers in aqueous solution. While all isomers occur mainly in the hydroxypyridine form in the gas phase, they differ by more than 3 orders of magnitude both in their acidity and tautomeric equilibrium constants upon hydration. By monitoring the electronic and solvation structures as a function of the protonation state and the O- substitution position on the pyridine ring, the amplification of the isomeric differences in aqueous solution has been investigated. Near-edge X-ray absorption fine structure (NEXAFS) measurements at the N K-edge served as the probe of the chemical state. The combination of molecular dynamics simulations, complete active space self-consistent field (CASSCF), and time-dependent density functional theory (TD-DFT) spectral calculations contributes to unraveling the principles of tautomerism and acidity in multiple biochemical systems based on tautomerism. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.0c10873 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 9 SP - 2372 EP - 2379 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sun, Y. -P. A1 - Miao, Q. A1 - Pietzsch, Annette A1 - Hennies, F. A1 - Schmitt, T. A1 - Strocov, V. N. A1 - Andersson, Joakim A1 - Kennedy, B. A1 - Schlappa, J. A1 - Föhlisch, Alexander A1 - Gel&rsquo, A1 - mukhanov, F. A1 - Rubensson, J. -E. T1 - Interference between Resonant and Nonresonant Inelastic X-Ray Scattering JF - PHYSICAL REVIEW LETTERS N2 - A detailed study of inelastic x-ray scattering from the ground state to the (3)Sigma(g)(3 sigma(-1)(g)3s(g)(1)) state of the O-2 molecule is presented. The observed angular anisotropy shows that the vibrational excitations within this final state are strongly dependent on the polarization of the incident radiation. The analysis demonstrates that this is a manifestation of interference between resonant and direct nonresonant inelastic x-ray scattering. This interference provides a new tool to monitor nuclear dynamics by relative rotation of the polarization vectors of the incident and scattered photons. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevLett.110.223001 SN - 0031-9007 VL - 110 IS - 22 PB - AMER PHYSICAL SOC CY - COLLEGE PK ER - TY - JOUR A1 - Sun, Y-P A1 - Pietzsch, Annette A1 - Hennies, Franz A1 - Rinkevicius, Z. A1 - Karlsson, Hans O. A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Andersson, Joakim A1 - Kennedy, B. A1 - Schlappa, J. A1 - Föhlisch, Alexander A1 - Gel'mukhanov, F. A1 - Rubensson, Jan-Erik T1 - Internal symmetry and selection rules in resonant inelastic soft x-ray scattering JF - Journal of physics : B, Atomic, molecular and optical physics N2 - Resonant inelastic soft x-ray scattering spectra excited at the dissociative 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O(2) are presented and discussed in terms of state-of-the-art molecular theory. A new selection rule due to internal spin coupling is established, facilitating a deep analysis of the valence excited final states. Furthermore, it is found that a commonly accepted symmetry selection rule due to orbital parity breaks down, as the core hole and excited electron swap parity, thereby opening the symmetry forbidden 3 sigma(g) decay channel. Y1 - 2011 U6 - https://doi.org/10.1088/0953-4075/44/16/161002 SN - 0953-4075 VL - 44 IS - 16 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sun, Y. -P. A1 - Hennies, Franz A1 - Pietzsch, Annette A1 - Kennedy, B. A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Andersson, Joakim A1 - Berglund, Martin A1 - Rubensson, Jan-Erik A1 - Aidas, K. A1 - Gel'mukhanov, F. A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Intramolecular soft modes and intermolecular interactions in liquid acetone JF - Physical review : B, Condensed matter and materials physics N2 - Resonant inelastic x-ray scattering spectra excited at the O1s(-1)pi* resonance of liquid acetone are presented. Scattering to the electronic ground state shows a resolved vibrational progression where the dominant contribution is due to the C-O stretching mode, thus demonstrating a unique sensitivity of the method to the local potential energy surface in complex molecular systems. For scattering to electronically excited states, soft vibrational modes and, to a smaller extent, intermolecular interactions give a broadening, which blurs the vibrational fine structure. It is predicted that environmental broadening is dominant in aqueous acetone. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevB.84.132202 SN - 1098-0121 VL - 84 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Yin, Zhong A1 - Rajkovic, Ivan A1 - Veedu, Sreevidya Thekku A1 - Deinert, Sascha A1 - Raiser, Dirk A1 - Jain, Rohit A1 - Fukuzawa, Hironobu A1 - Wada, Shin-ichi A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Schreck, Simon A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Ueda, Kyoshi A1 - Föhlisch, Alexander A1 - Techert, Simone T1 - Ionic solutions probed by resonant inelastic X-ray scattering JF - Zeitschrift für physikalische Chemie : international journal of research in physical chemistry and chemical physics N2 - X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction. KW - X-ray Spectroscopy KW - XAS KW - XES KW - RIXS KW - Anions KW - Cations KW - Liquid Jet KW - Synchrotron Radiation Y1 - 2015 U6 - https://doi.org/10.1515/zpch-2015-0610 SN - 0942-9352 VL - 229 IS - 10-12 SP - 1855 EP - 1867 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Decker, Régis A1 - Born, Artur A1 - Büchner, Robby A1 - Ruotsalainen, Kari A1 - Stråhlman, Christian A1 - Neppl, Stefan A1 - Haverkamp, Robert A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy JF - Scientific reports N2 - While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d -> 2p(3/2) decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-45242-8 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Eckert, Sebastian A1 - Miedema, P. S. A1 - Quevedo, W. A1 - Fondell, Mattis A1 - Beye, Martin A1 - Pietzsch, Annette A1 - Ross, M. A1 - Khalil, M. A1 - Föhlisch, Alexander T1 - Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution JF - Chemical physics letters N2 - The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms. (C) 2016 The Authors. Published by Elsevier B.V. Y1 - 2016 U6 - https://doi.org/10.1016/j.cplett.2016.01.050 SN - 0009-2614 SN - 1873-4448 VL - 647 SP - 103 EP - 106 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Eckert, Sebastian A1 - Miedema, Piter A1 - Quevedo, Wilson A1 - O'Cinneide, B. A1 - Fondell, Mattis A1 - Beye, Martin A1 - Pietzsch, Annette A1 - Ross, Matthew R. A1 - Khalil, Munira A1 - Föhlisch, Alexander T1 - Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms. (C) 2016 The Authors. Published by Elsevier B.V. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 953 KW - ray-emission-spectroscopy KW - x-ray KW - hydroxypyridine-pyridone KW - protomeric equilibria KW - self-association KW - CU(110) KW - valence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437473 SN - 1866-8372 IS - 953 SP - 103 EP - 106 ER - TY - JOUR A1 - Vaz da Cruz, Vinícius A1 - Ignatova, Nina A1 - Couto, Rafael A1 - Fedotov, Daniil A1 - Rehn, Dirk R. A1 - Savchenko, Viktoriia A1 - Norman, Patrick A1 - Ågren, Hans A1 - Polyutov, Sergey A1 - Niskanen, Johannes A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Fondell, Mattis A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Gel’mukhanov, Faris T1 - Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s). Y1 - 2019 U6 - https://doi.org/10.1063/1.5092174 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Eckert, Sebastian A1 - Vaz da Cruz, Vinicius A1 - Ertan, Emelie A1 - Ignatova, Nina A1 - Polyutov, Sergey A1 - Couto, Rafael C. A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays JF - Physical review : A, Atomic, molecular, and optical physics N2 - The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevA.97.053410 SN - 2469-9926 SN - 2469-9934 VL - 97 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Eckert, Sebastian A1 - Beye, Martin A1 - Pietzsch, Annette A1 - Quevedo, Wilson A1 - Hantschmann, Markus A1 - Ochmann, Miguel A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Turner, Joshua J. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Dakovski, Georgi L. A1 - Khalil, Munira A1 - Huse, Nils A1 - Föhlisch, Alexander T1 - Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids JF - Applied physics letters N2 - The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response. (C) 2015 AIP Publishing LLC. Y1 - 2015 U6 - https://doi.org/10.1063/1.4907949 SN - 0003-6951 SN - 1077-3118 VL - 106 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Iannuzzi, Marcella A1 - Ertan, Emelie A1 - Pietzsch, Annette A1 - Couto, Rafael C. A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Schmitt, Thorsten A1 - Lu, Xingye A1 - McNally, Daniel A1 - Jay, Raphael Martin A1 - Kimberg, Victor A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering JF - Nature Communications N2 - Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08979-4 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Yin, Zhong A1 - Rajkovic, Ivan A1 - Kubicek, Katharina A1 - Quevedo, Wilson A1 - Pietzsch, Annette A1 - Wernet, Philippe A1 - Föhlisch, Alexander A1 - Techert, Simone T1 - Probing the Hofmeister effect with ultrafast core-hole spectroscopy JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect if existent may be caused by more complex interactions. Y1 - 2014 U6 - https://doi.org/10.1021/jp504577a SN - 1520-6106 VL - 118 IS - 31 SP - 9398 EP - 9403 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Niskanen, Johannes A1 - Fondell, Mattis A1 - Sahle, Christoph J. A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Gilmore, Keith A1 - Pietzsch, Annette A1 - Dantz, Marcus A1 - Lu, Xingye A1 - McNally, Daniel E. A1 - Schmitt, Thorsten A1 - Vaz da Cruz, Vinicius A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water T2 - Proceedings of the National Academy of Sciences of the United States of America Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1909551116 SN - 0027-8424 VL - 116 IS - 35 SP - 17158 EP - 17159 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Hennies, Franz A1 - Pietzsch, Annette A1 - Berglund, Martin A1 - Föhlisch, Alexander A1 - Schmitt, Thorsten A1 - Strocov, Vladimir A1 - Karlsson, Hans O. A1 - Andersson, Joakim A1 - Rubensson, Jan-Erik T1 - Resonant inelastic scattering spectra of free molecules with vibrational resolution N2 - Inelastic x-ray scattering spectra excited at the 1s(-1) pi* resonance of gas phase O-2 have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B' (3) Pi(g) final state is controlled. Y1 - 2010 UR - http://prl.aps.org/ U6 - https://doi.org/10.1103/Physrevlett.104.193002 SN - 0031-9007 ER - TY - JOUR A1 - Rubensson, Jan-Erik A1 - Soderstrom, Johan A1 - Binggeli, Christian A1 - Grasjo, Joakim A1 - Andersson, Johan A1 - Sathe, Conny A1 - Hennies, Franz A1 - Bisogni, Valentina A1 - Huang, Yaobo A1 - Olalde, Paul A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Föhlisch, Alexander A1 - Kennedy, Brian A1 - Pietzsch, Annette T1 - Rydberg-Resolved Resonant Inelastic Soft X-Ray Scattering: Dynamics at Core Ionization Thresholds JF - Physical review letters N2 - Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N-2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevLett.114.133001 SN - 0031-9007 SN - 1079-7114 VL - 114 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Couto, Rafael C. A1 - Cruz, Vinicius V. A1 - Ertan, Emelie A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Guimaraes, Freddy F. A1 - Agren, Hans A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Selective gating to vibrational modes through resonant X-ray scattering JF - Nature Communications N2 - The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms14165 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Couto, Rafael C. A1 - Cruz, Vinicius V. A1 - Ertan, Emelie A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Guimarães, Freddy F. A1 - Ågren, Hans A1 - Gel’mukhanov, Faris A1 - Odelius, Michael A1 - Kimberg, Victor A1 - Föhlisch, Alexander T1 - Selective gating to vibrational modes through resonant X-ray scattering T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1124 KW - potential-energy surface KW - raman-scattering KW - water-vapor KW - spectroscopy KW - chemistry KW - molecule KW - spectrum KW - CM(-1) KW - states KW - NM Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436926 SN - 1866-8372 IS - 1124 ER - TY - JOUR A1 - Pietzsch, Annette A1 - Hennies, Franz A1 - Miedema, Piter S. A1 - Kennedy, Brian A1 - Schlappa, Justine A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Föhlisch, Alexander T1 - Snapshots of the Fluctuating Hydrogen Bond Network in Liquid Water on the Sub-Femtosecond Timescale with Vibrational Resonant Inelastic x-ray Scattering JF - Physical review letters N2 - Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevLett.114.088302 SN - 0031-9007 SN - 1079-7114 VL - 114 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pietzsch, Annette A1 - Sun, Y. -P. A1 - Hennies, Franz A1 - Rinkevicius, Z. A1 - Karlsson, Hans O. A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Andersson, Joakim A1 - Kennedy, B. A1 - Schlappa, J. A1 - Föhlisch, Alexander A1 - Rubensson, Jan-Erik A1 - Gel'mukhanov, F. T1 - Spatial quantum beats in vibrational resonant inelastic soft X-ray scattering at dissociating states in oxygen JF - Physical review letters N2 - Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O-2 show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.153004 SN - 0031-9007 VL - 106 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Decker, Regis A1 - Born, Artur A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Haverkamp, Robert A1 - Büchner, Robby A1 - Pietzsch, Annette A1 - Föhlisch, Alexander T1 - Spin-lattice angular momentum transfer of localized and valence electrons in the demagnetization transient state of gadolinium JF - Applied physics letters N2 - The electron-phonon scattering is one of the main microscopic mechanisms responsible for the spin-flip in the transient state of ultrafast demagnetization. Here, we present an experimental determination of the temperature-dependent electron-phonon scattering rate in Gd. Using a static x-ray emission spectroscopy method, where the reduction of the decay peak intensities when increasing the temperature is quantified, we measure independently the electron-phonon scattering rate for the 5d and the 4f electrons. We deduce the temperature dependence of scattering for the 5d electrons, while no effect on the phonon population is observed for the 4f electrons. Our results suggest that the ultrafast magnetization dynamics in Gd is triggered by the spin-flip in the 5d electrons. We also evidence the existence of a temperature threshold, above which spin-flip scattering of the 5d electrons takes place. We deduce that during the transient state of ultrafast demagnetization, the exchange energy between 5d electrons has to be overcome before the microscopic electron-phonon scattering process can occur. Y1 - 2021 U6 - https://doi.org/10.1063/5.0063404 SN - 0003-6951 SN - 1077-3118 VL - 119 IS - 15 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Vaz da Cruz, Vinicius A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Pietzsch, Annette A1 - Eckert, Sebastian A1 - Föhlisch, Alexander T1 - Targeting individual tautomers in equilibrium by resonant inelastic X-ray scattering JF - The journal of physical chemistry letters N2 - Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the pi and sigma manifolds at the proton-transfer site. KW - Equilibrium KW - Molecular structure KW - Molecules KW - Nitrogen KW - Solvents Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.1c03453 SN - 1948-7185 VL - 13 IS - 10 SP - 2459 EP - 2466 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jay, Raphael Martin A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Miedema, Piter S. A1 - Norell, Jesper A1 - Pietzsch, Annette A1 - Quevedo, Wilson A1 - Niskanen, Johannes A1 - Kunnus, Kristjan A1 - Föhlisch, Alexander T1 - The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(II) center. Exchanging cyanide with 2-2′-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal–ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications. Y1 - 2018 U6 - https://doi.org/10.1039/c8cp04341h SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 44 SP - 27745 EP - 27751 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Büchner, Robby A1 - Fondell, Mattis A1 - Haverkamp, Robert A1 - Pietzsch, Annette A1 - Vaz da Cruz, Vinícius A1 - Föhlisch, Alexander T1 - The porphyrin center as a regulator for metal-ligand covalency and pi hybridization in the entire molecule JF - Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies N2 - The central moiety of porphyrins is shown to control the charge state of the inner complex and links it by covalent interaction to the peripheral substituents. This link, which enables the versatile functions of porphyrins, is not picked up in the established, reduced four orbital picture [Gouterman, J. Mol. Spectrosc., 1961, 6, 138]. X-ray absorption spectroscopy at the N K-edge with density functional theory approaches gives access to the full electronic structure, in particular the pi* manifold beyond the Gouterman orbitals. Systematic variation of the central moiety highlights two linked, governing trends: The ionicity of the porphyrin center increases from the aminic N-H to N-Cu to N-Zn to N-Mg to the iminic N:. At the same time covalency with peripheral substituents increases and compensates the buildup of high charge density at the coordinated nitrogen sites. Y1 - 2021 U6 - https://doi.org/10.1039/d1cp03944j SN - 1463-9076 SN - 1463-9084 VL - 23 IS - 43 SP - 24765 EP - 24772 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Born, Artur A1 - Decker, Regis A1 - Haverkamp, Robert A1 - Ruotsalainen, Kari A1 - Bauer, Karl A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Büchner, Robby T1 - Thresholding of the Elliott-Yafet spin-flip scattering in multi-sublattice magnets by the respective exchange energies JF - Scientific reports N2 - How different microscopic mechanisms of ultrafast spin dynamics coexist and interplay is not only relevant for the development of spintronics but also for the thorough description of physical systems out-of-equilibrium. In pure crystalline ferromagnets, one of the main microscopic mechanism of spin relaxation is the electron-phonon (el-ph) driven spin-flip, or Elliott-Yafet, scattering. Unexpectedly, recent experiments with ferro- and ferrimagnetic alloys have shown different dynamics for the different sublattices. These distinct sublattice dynamics are contradictory to the Elliott-Yafet scenario. In order to rationalize this discrepancy, it has been proposed that the intra- and intersublattice exchange interaction energies must be considered in the microscopic demagnetization mechanism, too. Here, using a temperature-dependent x-ray emission spectroscopy (XES) method, we address experimentally the element specific el-ph angular momentum transfer rates, responsible for the spin-flips in the respective (sub)lattices of Fe20Ni80, Fe50Ni50 and pure nickel single crystals. We establish how the deduced rate evolution with the temperature is linked to the exchange coupling constants reported for different alloy stoichiometries and how sublattice exchange energies threshold the related el-ph spin-flip channels. Thus, these results evidence that the Elliott-Yafet spin-flip scattering, thresholded by sublattice exchange energies, is the relevant microscopic process to describe sublattice dynamics in alloys and elemental magnetic systems. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-81177-9 SN - 2045-2322 VL - 11 IS - 1 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Ertan, Emelie A1 - Savchenko, Viktoriia A1 - Ignatova, Nina A1 - Vaz da Cruz, Vinicius A1 - Couto, Rafael C. A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Dantz, Marcus A1 - Kennedy, Brian A1 - Schmitt, Thorsten A1 - Pietzsch, Annette A1 - Föhlisch, Alexander A1 - Odelius, Michael A1 - Kimberg, Victor T1 - Ultrafast dissociation features in RIXS spectra of the water molecule JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s−1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b−114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass. Y1 - 2018 U6 - https://doi.org/10.1039/c8cp01807c SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 21 SP - 14384 EP - 14397 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - Van Kuiken, Benjamin E. A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale. KW - nitrogen KW - photochemistry KW - protonation KW - RIXS (resonant inelastic X-ray scattering) KW - selective bond cleavage Y1 - 2017 U6 - https://doi.org/10.1002/anie.201700239 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 6088 EP - 6092 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - van Kuiken, Benjamin E. A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1115 KW - nitrogen KW - photochemistry KW - protonation KW - RIXS (resonant inelastic X-ray scattering) KW - selective bond cleavage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436873 SN - 1866-8372 IS - 1115 ER - TY - JOUR A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - van Kuiken, Benjamin A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Untersuchung unabhängiger N‐H‐ und N‐C‐Bindungsverformungen auf ultrakurzen Zeitskalen mit resonanter inelastischer Röntgenstreuung JF - Angewandte Chemie N2 - Die Femtosekundendynamik nach resonanten Photoanregungen mit optischen und Röntgenpulsen ermöglicht eine selektive Verformung von chemischen N‐H‐ und N‐C‐Bindungen in 2‐Thiopyridon in wässriger Lösung. Die Untersuchung der orbitalspezifischen elektronischen Struktur und ihrer Dynamik auf ultrakurzen Zeitskalen mit resonanter inelastischer Röntgenstreuung an der N1s‐Resonanz am Synchrotron und dem Freie‐Elektronen‐Laser LCLS in Kombination mit quantenchemischen Multikonfigurationsberechnungen erbringen den direkten Nachweis dieser kontrollierten photoinduzierten Molekülverformungen und ihrer ultrakurzen Zeitskala. KW - Photochemie KW - Protonierung KW - RIXS (resonante inelastische Röntgenstreuung) KW - Selektiver Bindungsbruch KW - Stickstoff Y1 - 2017 U6 - https://doi.org/10.1002/ange.201700239 SN - 1521-3757 SN - 1521-3773 VL - 129 IS - 22 SP - 6184 EP - 6188 ER - TY - GEN A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - van Kuiken, Benjamin E. A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Untersuchung unabhängiger N‐H‐ und N‐C‐Bindungsverformungen auf ultrakurzen Zeitskalen mit resonanter inelastischer Röntgenstreuung T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Die Femtosekundendynamik nach resonanten Photoanregungen mit optischen und Röntgenpulsen ermöglicht eine selektive Verformung von chemischen N‐H‐ und N‐C‐Bindungen in 2‐Thiopyridon in wässriger Lösung. Die Untersuchung der orbitalspezifischen elektronischen Struktur und ihrer Dynamik auf ultrakurzen Zeitskalen mit resonanter inelastischer Röntgenstreuung an der N1s‐Resonanz am Synchrotron und dem Freie‐Elektronen‐Laser LCLS in Kombination mit quantenchemischen Multikonfigurationsberechnungen erbringen den direkten Nachweis dieser kontrollierten photoinduzierten Molekülverformungen und ihrer ultrakurzen Zeitskala. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1121 KW - Photochemie KW - Protonierung KW - RIXS (resonante inelastische Röntgenstreuung) KW - Selektiver Bindungsbruch KW - Stickstoff Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436688 SN - 1866-8372 IS - 1121 ER - TY - JOUR A1 - Arhammar, C. A1 - Pietzsch, Annette A1 - Bock, Nicolas A1 - Holmstroem, Erik A1 - Araujo, C. Moyses A1 - Grasjo, Johan A1 - Zhao, Shuxi A1 - Green, Sara A1 - Peery, T. A1 - Hennies, Franz A1 - Amerioun, Shahrad A1 - Föhlisch, Alexander A1 - Schlappa, Justine A1 - Schmitt, Thorsten A1 - Strocov, Vladimir N. A1 - Niklasson, Gunnar A. A1 - Wallace, Duane C. A1 - Rubensson, Jan-Erik A1 - Johansson, Borje A1 - Ahuja, Rajeev C. T1 - Unveiling the complex electronic structure of amorphous metal oxides JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides. KW - stochastic quench KW - X-ray absorption spectroscopy KW - ab initio KW - coating Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1019698108 SN - 0027-8424 VL - 108 IS - 16 SP - 6355 EP - 6360 PB - National Acad. of Sciences CY - Washington ER -