TY - CHAP A1 - Engel, Tilman A1 - Müller, Juliane A1 - Müller, Steffen A1 - Reschke, Antje A1 - Kopinski, Stephan A1 - Mayer, Frank T1 - Validity and reliability of a new customised split-belt treadmill provoking unexpected walking perturbations T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 462 EP - 462 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Engel, Tilman A1 - Mueller, Juliane A1 - Kopinski, Stephan A1 - Reschke, Antje A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Unexpected walking perturbations: Reliability and validity of a new treadmill protocol to provoke muscular reflex activities at lower extremities and the trunk JF - Journal of biomechanics N2 - Instrumented treadmills offer the potential to generate standardized walking perturbations, which are particularly rapid and powerful. However, technical requirements to release adequate perturbations regarding timing, duration and amplitude are demanding. This study investigated the test-retest reliability and validity of a new treadmill perturbation protocol releasing rapid and unexpected belt perturbations to provoke muscular reflex responses at lower extremities and the trunk. Fourteen healthy participants underwent two identical treadmill walking protocols, consisting of 10 superimposed one-sided belt perturbations (100 ms duration; 2 m/s amplitude), triggered by a plantar pressure insole 200 ms after heel contact. Delay, duration and amplitude of applied perturbations were recorded by 3D-motion capture. Muscular reflex responses (within 200 ms) were measured at lower extremities and the trunk (10-lead EMG). Data was analyzed descriptively (mean +/- SD). Reliability was analyzed using test-retest variability (TRV%) and limits of agreement (LoA, bias +/- 1.96*SD). Perturbation delay was 202 14 ms, duration was 102 +/- 4 ms and amplitude was 2.1 +/- 0.01 m/s. TRV for perturbation delay, duration and amplitude ranged from 5.0% to 5.7%. LoA reached 3 +/- 36 ms for delay, 2 +/- 13 ms for duration and 0.0 +/- 0.3 m/s for amplitude. EMG amplitudes following perturbations ranged between 106 +/- 97% and 909 +/- 979% of unperturbed gait and EMG latencies between 82 +/- 14 ms and 106 +/- 16 ms. Minor differences between preset and observed perturbation characteristics and results of test-retest analysis prove a high validity with excellent reliability of the setup. Therefore, the protocol tested can be recommended to provoke muscular reflex responses at lower extremities and the trunk in perturbed walking. (C) 2017 Elsevier Ltd. All rights reserved. KW - Perturbation KW - Stumbling KW - Gait KW - Treadmill KW - Reliability KW - MiSpEx Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiomech.2017.02.026 SN - 0021-9290 SN - 1873-2380 VL - 55 SP - 152 EP - 155 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Cassel, Michael A1 - Fröhlich, Katja A1 - Mayer, Frank A1 - Carlsohn, Anja T1 - Ultrasound Applied to Subcutaneous Fat Tissue Measurements in International Elite Canoeists JF - International journal of sports medicine N2 - Subcutaneous adipose tissue (SAT) measurements with ultrasound have recently been introduced to assess body fat in elite athletes. However, appropriate protocols and data on various groups of athletes are missing. We investigated intra-rater reliability of SAT measurements using ultrasound in elite canoe athletes. 25 international level canoeists (18 male, 7 female; 23 +/- 4 years; 81 +/- 11 kg; 1.83 +/- 0.09 m; 20 +/- 3 training h/wk) were measured on 2 consecutive days. SAT was assessed with B-mode ultrasound at 8 sites (ISAK): triceps, subscapular, biceps, iliac crest, supraspinal, abdominal, front thigh, medial calf, and quantified using image analysis software. Data was analyzed descriptively (mean +/- SD, [range]). Coefficient of variation (CV %), intraclass correlation coefficient (ICC, 2.1) and absolute (LoA) and ratio limits of agreement (RLoA) were calculated for day-to-day reliability. Mean sum of SAT thickness was 30.0 +/- 19.4 mm [8.0, 80.1 mm], with 3.9 +/- 1.8 mm [1.2 mm subscapular, 8.0 mm abdominal] for individual sites. CV for the sum of sites was 4.7 %, ICC 0.99, LoA 1.7 +/- 3.6 mm, RLoA 0.940 (*/divided by 1.155). Measuring SAT with ultrasound has proved to have excellent day-to-day reliability in elite canoe athletes. Recommendations for standardization of the method will further increase accuracy and reproducibility. KW - subcutaneous adipose tissue KW - skinfold thickness KW - elite athletes KW - body composition KW - ultrasonography Y1 - 2015 U6 - https://doi.org/10.1055/s-0035-1555857 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 14 SP - 1134 EP - 1141 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Rowley, K. Michael A1 - Engel, Tilman A1 - Kulig, Kornelia T1 - Trunk and hip muscle activity during the Balance-Dexterity task in persons with and without recurrent low back pain JF - Journal of electromyography and kinesiology N2 - Coordination of the trunk and hips is crucial for successful dynamic balance in many activities of daily living. Persons with recurrent low back pain (rLBP), both while symptomatic and during periods of symptom remission, exhibit dysfunctional muscle activation patterns and coordination of these joints. In a novel dynamic balance task where persons in remission from rLBP exhibit dissociated trunk motion, it is unknown how trunk and hip musculature are coordinated. Activation of hip and trunk muscles were acquired from nineteen persons with and without rLBP during the Balance-Dexterity Task, which involves balancing on one limb while compressing an unstable spring with the other. There were no between-group differences in activation amplitude for any muscle groups tested. In back-healthy control participants, hip and trunk muscle activation amplitudes increased proportionally in response to the added instability of the spring (R = 0.837, p < 0.001). Increases in muscle activation amplitudes in the group in remission from rLBP were not proportional (R = 0.113, p = 0.655). Instead, hip muscle activation in this group was associated with task performance, i.e. dexterous control of the spring (R = 0.676, p = 0.002). These findings highlight atypical coordination of hip and trunk musculature potentially related to task demands in persons with rLBP even during remission from pain. KW - balance KW - low back pain KW - trunk and hip coordination KW - lumbopelvic Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2019.102378 SN - 1050-6411 SN - 1873-5711 VL - 50 PB - Elsevier Science CY - Amsterdam ER - TY - CHAP A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Torque-EMG relationship of lower back muscles - a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 7 EP - 8 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - CHAP A1 - Reschke, Antje A1 - Müller, Juliane A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Three-dimensional spine kinematics during perturbed treadmill walking - a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 172 EP - 172 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Quarmby, Andrew James A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - The feasibility of a split-belt instrumented treadmill running protocol with perturbations JF - Journal of biomechanics N2 - Unexpected perturbations during locomotion can occur during daily life or sports performance. Adequate compensation for such perturbations is crucial in maintaining effective postural control. Studies utilising instrumented treadmills have previously validated perturbed walking protocols, however responses to perturbed running protocols remain less investigated. Therefore, the purpose of this study was to investigate the feasibility of a new instrumented treadmill-perturbed running protocol.
Fifteen participants (age = 2 8 +/- 3 years; height = 172 +/- 9 cm; weight = 69 +/- 10 kg; 60% female) completed an 8-minute running protocol at baseline velocity of 2.5 m/s (9 km/h), whilst 15 one-sided belt perturbations were applied (pre-set perturbation characteristics: 150 ms delay (post-heel contact); 2.0 m/s amplitude; 100 ms duration). Perturbation characteristics and EMG responses were recorded. Bland-Altman analysis (BLA) was employed (bias +/- limits of agreement (LOA; bias +/- 1.96*SD)) and intra-individual variability of repeated perturbations was assessed via Coefficients of Variation (CV) (mean +/- SD).
On average, 9.4 +/- 2.2 of 15 intended perturbations were successful. Perturbation delay was 143 +/- 10 ms, amplitude was 1.7 +/- 0.2 m/s and duration was 69 +/- 10 ms. BLA showed -7 +/- 13 ms for delay, -0.3 +/- 0.1 m/s for amplitude and -30 +/- 10 ms for duration. CV showed variability of 19 +/- 4.5% for delay, 58 +/- 12% for amplitude and 30 +/- 7% for duration. EMG RMS amplitudes of the legs and trunk ranged from 113 +/- 25% to 332 +/- 305% when compared to unperturbed gait. This study showed that the application of sudden perturbations during running can be achieved, though with increased variability across individuals. The perturbations with the above characteristics appear to have elicited a neuromuscular response during running. KW - Lower-extremity perturbations KW - Split-belt treadmill KW - Running KW - Stumbling KW - EMC Y1 - 2020 U6 - https://doi.org/10.1016/j.jbiomech.2019.109493 SN - 0021-9290 SN - 1873-2380 VL - 98 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Nair, Alexandra A1 - Heikkila, Mika A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - The effect of chronic ankle instability on muscle activations in lower extremities JF - PLOS ONE / Public Library of Science N2 - Background/Purpose Muscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls. Materials and methods In a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≤0.05 and 95% confidence intervals were applied to determine group differences. Cohen’s d effect sizes were calculated to evaluate the extent of differences. Results Participants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (p<0.05). Overall, leg muscles (rectus femoris, biceps femoris, and gluteus medius) activated earlier and less bilaterally (d = 0.30–0.88) and trunk muscles (bilateral rectus abdominus and NON-erector spinae) activated earlier and more for the CAI group than CON group (d = 0.33–1.09). Conclusion Unilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI. KW - Ankles KW - Walking KW - Electromyography KW - Hip KW - Skeletal joints KW - Knees KW - Legs KW - Musculoskeletal injury Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0247581 SN - 1932-6203 VL - 16 IS - 2 PB - PLOS CY - San Francisco ER - TY - GEN A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Nair, Alexandra A1 - Heikkila, Mika A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - The effect of chronic ankle instability on muscle activations in lower extremities T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background/Purpose Muscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls. Materials and methods In a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≤0.05 and 95% confidence intervals were applied to determine group differences. Cohen’s d effect sizes were calculated to evaluate the extent of differences. Results Participants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (p<0.05). Overall, leg muscles (rectus femoris, biceps femoris, and gluteus medius) activated earlier and less bilaterally (d = 0.30–0.88) and trunk muscles (bilateral rectus abdominus and NON-erector spinae) activated earlier and more for the CAI group than CON group (d = 0.33–1.09). Conclusion Unilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 712 KW - Electromyography KW - Hip KW - Skeletal joints KW - Knees KW - Legs KW - Musculoskeletal injury KW - Walking KW - Ankles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515632 SN - 1866-8364 ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Engel, Tilman A1 - Reschke, Antje A1 - Baur, Heiner A1 - Mayer, Frank T1 - Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study JF - Journal of biomechanics N2 - Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 +/- 26% (UTA/rotation) and 262 +/- 132% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 +/- 283%; back: 501 +/- 215%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling. (C) 2015 Elsevier Ltd. All rights reserved. KW - Trunk kinematics KW - Treadmill walking KW - Gait perturbation KW - EMG Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2015.09.041 SN - 0021-9290 SN - 1873-2380 VL - 49 SP - 933 EP - 938 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Nair, Alexandra A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Heikkila, Mika A1 - Engel, Tilman A1 - Mayer, Frank T1 - Side comparison of knee muscle activities in response to perturbed walking of unilateral ankle instability T2 - Medicine and science in sports and exercise : MSSE N2 - Acute ankle sprain leads in 40% of all cases to chronic ankle instability (CAI). CAI is related to a variety of motor adaptations at the lower extremities. Previous investigations identified increased muscle activities while landing in CAI compared to healthy control participants. However, it remains unclear whether muscular alterations at the knee muscles are limited to the involved (unstable) ankle or are also present at the uninvolved leg. The latter might potentially indicate a risk of ankle sprain or future injury on the uninvolved leg. Purpose: To assess if there is a difference of knee muscle activities between the involved and uninvolved leg in participants with CAI during perturbed walking. Method: 10 participants (6 females; 4 males; 26±4 years; 169±9 cm; 65±7 kg) with unilateral CAI walked on a split-belt treadmill (1m/s) for 5 minutes of baseline walking and 6 minutes of perturbed walking (left and right side, each 10 perturbations). Electromyography (EMG) measurements were performed at biceps femoris (BF) and rectus femoris (RF). EMG amplitude (RMS; normalized to MVIC) were analyzed for 200ms pre-heel contact (Pre200), 100ms post heel contact (Post100) and 200ms after perturbation (Pert200). Data was analyzed by paired t-test/Wilcoxon test based on presence or absence of normal distribution (Bonferroni adjusted α level p≤ 0.0125). Results: No statistical difference was found between involved and uninvolved leg for RF (Pre200: 4±2% and 11± 22%, respectively, p= 0.878; Post100: 10± 5 and 18±31%, p=0.959; Pert200: 6±3% and 13±24%, p=0.721) as well as for BF (Pre200: 12±7% and 11±6, p=0.576; Post100: 10±7% and 9±7%, p=0.732; Pert200: 7±4 and 7±7%, p=0.386). Discussion: No side differences in muscle activity could be revealed for assessed feedforward and feedback responses (perturbed and unperturbed) in unilateral CAI. Reduced inter-individual variability of muscular activities at the involved leg might indicate a rather stereotypical response pattern. It remains to be investigated, whether muscular control at the knee is not affected by CAI, or whether both sides adapted in a similar style to the chronic condition at the ankle. Y1 - 2020 U6 - https://doi.org/10.1249/01.mss.0000671088.10003.6b SN - 0195-9131 SN - 1530-0315 VL - 52 IS - 17 SP - 97 EP - 97 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Sensorimotor exercises and enhanced trunk function BT - a randomized controlled trial JF - International journal of sports medicine N2 - The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95%CI +/- 19Nm; Rotation: + 19Nm 95%CI +/- 13Nm) and RT (Extension: +35Nm 95%CI +/- 16Nm; Rotation: +5Nm 95%CI +/- 4Nm) compared to CG (Extension: -4Nm 95%CI +/- 16Nm; Rotation: -2Nm 95%CI +/- 4Nm) was present (p<0.05). KW - core KW - training intervention KW - prevention KW - perturbation KW - MiSpEx* Y1 - 2018 U6 - https://doi.org/10.1055/a-0592-7286 SN - 0172-4622 SN - 1439-3964 VL - 39 IS - 7 SP - 555 EP - 563 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Scapular kinematics during unloaded and maximal loaded isokinetic concentric and eccentric shoulder flexion and extension movements JF - Journal of electromyography & kinesiology : official journal of the International Society of Electrophysiology and Kinesiology N2 - Characterization of scapular kinematics under demanding load conditions might aid to distinguish between physiological and clinically relevant alterations. Previous investigations focused only on submaximal external load situations. How scapular movement changes with maximal load remains unclear. Therefore, the present study aimed to evaluate 3D scapular kinematics during unloaded and maximal loaded shoulder flexion and extension. Twelve asymptomatic individuals performed shoulder flexion and extension movements under unloaded and maximal concentric and eccentric loaded isokinetic conditions. 3D scapular kinematics assessed with a motion capture system was analyzed for 20° intervals of humeral positions from 20° to 120° flexion. Repeated measures ANOVAs were used to evaluate kinematic differences between load conditions for scapular position angles, scapulohumeral rhythm and scapular motion extent. Increased scapular upward rotation was seen during shoulder flexion and extension as well as decreased posterior tilt and external rotation during eccentric and concentric arm descents of maximal loaded compared to unloaded conditions. Load effects were further seen for the scapulohumeral rhythm with greater scapular involvement at lower humeral positions and increased scapular motion extent under maximal loaded shoulder movements. With maximal load applied to the arm physiological scapular movement pattern are induced that may imply both impingement sparing and causing mechanisms. KW - Isokinetics KW - Motion analysis KW - Scapular dyskinesis KW - Scapulohumeral rhythm KW - Scapulothoracic Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2021.102517 SN - 1050-6411 SN - 1873-5711 VL - 57 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Wolter, Martin A1 - Engel, Tilman A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Reproducibility of scapular muscle activity in isokinetic shoulder flexion and extension JF - Journal of electromyography and kinesiology N2 - Repetitive overhead movements have been identified as a main risk factor to develop shoulder complaints with scapular muscle activity being altered. Reliable assessment of muscle activity is essential to differentiate between symptomatic and asymptomatic individuals. Therefore, the present study aimed to investigate the intra-and inter-session reliability of scapular muscle activity during maximal isokinetic shoulder flexion and extension. Eleven asymptomatic adults performed maximum effort isokinetic shoulder flexion and extension (concentric and eccentric at 60 degrees/s) in a test-retest design. Muscle activity of the upper and lower trapezius and serratus anterior was assessed by sEMG. Root Mean Square was calculated for whole ROM and single movement phases of absolute and normalized muscle activity. Absolute (Bland-Altman analysis (Bias, LoA), Minimal detectable change (MDC)) and relative reliability parameters (Intraclass correlation coefficient (ICC), coefficient of variation (CV)/test-retest variability (TRV)) were utilized for the evaluation of reproducibility. Intra-session reliability revealed ICCs between 0.56 and 0.98, averaged CVs of 18% and average MDCs of 81 mV. Inter-session reliability resulted in ICCs between 0.13 and 0.93, averaged TRVs of 21%, average MDCs of 15% and systematic and random error between -8 +/- 60% and 12 +/- 36%. Scapular muscle activity assessed in overhead movements can be measured reliably under maximum load conditions, though variability is dependent on the movement phase. Measurement variability does not exceed magnitudes of altered scapular muscle activities as reported in previous studies. Therefore, maximum load application is a promising approach for the evaluation of changes in scapular control related to pathologies. (C) 2017 Elsevier Ltd. All rights reserved. Y1 - 2017 U6 - https://doi.org/10.1016/j.jelekin.2017.04.006 SN - 1050-6411 SN - 1873-5711 VL - 34 SP - 86 EP - 92 PB - Elsevier CY - Oxford ER - TY - CHAP A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Cassel, Michael A1 - Carlsohn, Anja A1 - Mayer, Frank T1 - Reliability of ultrasound measurements for subcutaneous adipose tissue in elite canoe athletes T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 539 EP - 539 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Risch, Lucie A1 - Wochatz, Monique A1 - Messerschmidt, Janin A1 - Engel, Tilman A1 - Mayer, Frank A1 - Cassel, Michael T1 - Reliability of evaluating achilles tendon vascularization assessed with doppler ultrasound advanced dynamic flow JF - Journal of ultrasound in medicine N2 - The reliability of quantifying intratendinous vascularization by high-sensitivity Doppler ultrasound advanced dynamic flow has not been examined yet. Therefore, this study aimed to investigate the intraobserver and interobserver reliability of evaluating Achilles tendon vascularization by advanced dynamic flow using established scoring systems. Methods-Three investigators evaluated vascularization in 67 recordings in a test-retest design, applying the Ohberg score, a modified Ohberg score, and a counting score. Intraobserver and interobserver agreement for the Ohberg score and modified Ohberg score was analyzed by the Cohen kappa and Fleiss kappa coefficients (absolute), Kendall tau b coefficient, and Kendall coefficient of concordance (W; relative). The reliability of the counting score was analyzed by intraclass correlation coefficients (ICC) 2.1 and 3.1, the standard error of measurement (SEM), and Bland-Altman analysis (bias and limits of agreement [LoA]). Results-Intraobserver and interobserver agreement (absolute/relative) ranged from 0.61 to 0.87/0.87 to 0.95 and 0.11 to 0.66/0.76 to 0.89 for the Ohberg score and from 0.81 to 0.87/0.92 to 0.95 and 0.64 to 0.80/0.88 to 0.93 for the modified Ohberg score, respectively. The counting score revealed an intraobserver ICC of 0.94 to 0.97 (SEM, 1.0-1.5; bias, -1; and LoA, 3-4 vessels). The interobserver ICC for the counting score ranged from 0.91 to 0.98 (SEM, 1.0-1.9; bias, 0; and LoA, 3-5 vessels). Conclusions-The modified Ohberg score and counting score showed excellent reliability and seem convenient for research and clinical practice. The Ohberg score revealed decent intraobserver but unexpected low interobserver reliability and therefore cannot be recommended. KW - advanced dynamic flow KW - intratendinous blood flow KW - musculoskeletal KW - reliability KW - ultrasound Y1 - 2017 U6 - https://doi.org/10.1002/jum.14414 SN - 0278-4297 SN - 1550-9613 VL - 37 IS - 3 SP - 737 EP - 744 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes: A Longitudinal Study JF - Frontiers in physiology N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 +/- 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean SD) and statistical testing for group differences was performed (cy = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 +/- 0.7 mm/5.6 +/- 0.7 mm) nor in controls (4.8 +/- 0.4 mm/4.9 +/- 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (Ml: 3.5 +/- 0.5 mm, M2: 3.8 +/- 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p <= 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. KW - Achilles and patellar tendon KW - training adaptation KW - sonography KW - young athletes KW - non-athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00795 SN - 1664-042X VL - 8 SP - 599 EP - 611 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes BT - A Longitudinal Study N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 355 KW - Achilles and patellar tendon KW - non-athletes KW - sonography KW - training adaptation KW - young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403823 ER - TY - JOUR A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes BT - A Longitudinal Study JF - Frontiers in physiology N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. KW - Achilles and patellar tendon KW - training adaptation KW - sonography KW - young athletes KW - non-athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00795 SN - 1664-042X VL - 8 SP - 1 EP - 8 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Müller, Juliane A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Mayer, Frank A1 - Müller, Steffen T1 - Neuromuscular trunk activation patterns in back pain patients during one-handed lifting JF - World journal of orthopedics N2 - AIM To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. METHODS RESULTS Seven subjects (3m/4f; 32 +/- 7 years; 171 +/- 7 cm; 65 +/- 11 kg) were assigned to BPP (pain grade >= 2) and 36 (13m/23f; 28 +/- 8 years; 174 +/- 10 cm; 71 +/- 12 kg) to H (pain grade <= 1). H and BPP did not differ significantly in anthropometrics (P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women) chi(2) analysis revealed statistically significant differences in task failure between H vs BPP (P = 0.03). EMG-RMS ranged from 33% +/- 10%/30% +/- 9% (DL, 1 kg) to 356% +/- 148%/283% +/- 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load (P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. CONCLUSION Heavier loading leads to an increase (2-to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain. KW - Lifting KW - Core KW - Trunk KW - EMG KW - MISPEX Y1 - 2016 U6 - https://doi.org/10.5312/wjo.v8.i2.142 SN - 2218-5836 VL - 8 IS - 2 SP - 142 EP - 148 PB - Baishideng Publishing Group CY - Pleasanton ER -