TY - JOUR A1 - Dreyer, Ingo A1 - Gajdanowicz, Pawel T1 - Regulation of the gating mode of the Arabidopsis K+ channel AKT2 is important for adaptation to abiotic stress Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/10956433 U6 - https://doi.org/10.1016/j.cbpa.2009.04.426 SN - 1095-6433 ER - TY - JOUR A1 - Sato, A A1 - Gambale, Franco A1 - Dreyer, Ingo A1 - Uozumi, N T1 - Posttranslational inodification affects K+ current of plant K+ channel Y1 - 2006 ER - TY - JOUR A1 - Wood, C. C. A1 - Poree, Fabien A1 - Dreyer, Ingo A1 - Koehler, G. J. A1 - Udvardi, M. K. T1 - Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1; 1 N2 - Ammonium is a primary source of N for plants, so knowing how it is transported, stored, and assimilated in plant cells is important for rational approaches to optimise N-use in agriculture. Electrophysiological studies of Arabidopsis AtAMT1;1 expressed in oocytes revealed passive, Delta psi-driven transport of NH4+ through this protein. Expression of AtAMT1;1 in a novel yeast mutant defective in endogenous ammonium transport and vacuolar acidification supported the above mechanism for AtAMT1;1 and revealed a central role for acid vacuoles in storage and retention of ammonia in cells. These results highlight the mechanistic differences between plant AMT proteins and related transporters in bacteria and animal cells, and suggest novel strategies to enhance nitrogen use efficiency in agriculture. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved Y1 - 2006 UR - http://www.sciencedirect.com/science/article/pii/S0014579306007332 U6 - https://doi.org/10.1016/j.febslet.2006.06.026 ER - TY - JOUR A1 - Poree, Fabien A1 - Wulfetange, K. A1 - Naso, A. A1 - Carpaneto, Armando A1 - Roller, A. A1 - Natura, G. A1 - Bertl, Adam A1 - Sentenac, H. A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - Plant K-in and K-out channels : Approaching the trait of opposite rectification by analyzing more than 250 KAT1- SKOR chimeras N2 - Members of the Shaker-like plant K+ channel family share a common structure, but are highly diverse in their function: they behave as either hyperpolarization-activated inward-rectifying (K-in) channels, or leak-like (K-weak) channels, or depolarization-activated outward-rectifying (K-out) channels. Here we created 256 chimeras between the K-in channel KAT1 and the K-out channel SKOR. The chimeras were screened in a potassium-uptake deficient yeast strain to identify those, which mediate potassium inward currents, i.e., which are functionally equivalent to KAT1. This strategy allowed Lis to identify three chimeras which differ from KAT1 in three parts of the polypeptide: the cytosolic N- terminus, the cytosolic C-terminus, and the putative voltage-sensor S4. Additionally, mutations in the K-out Channel SKOR were generated in order to localize molecular entities underlying its depolarization activation. The triple mutant SKOR-D312N-M313L-1314G, carrying amino-acid changes in the S6 segment, was identified as a channel which did not display any rectification in the tested voltage-range. (C) 2005 Elsevier Inc. All rights reserved Y1 - 2005 SN - 0006-291X ER - TY - JOUR A1 - Skłodowski, Kamil A1 - Riedelsberger, Janin A1 - Raddatz, Natalia A1 - Riadi, Gonzalo A1 - Caballero, Julio A1 - Chérel, Isabelle A1 - Schulze, Waltraud A1 - Graf, Alexander A1 - Dreyer, Ingo T1 - The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2 JF - Scientific reports N2 - The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals. Y1 - 2017 U6 - https://doi.org/10.1038/srep44611 SN - 2045-2322 VL - 7 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Dreyer, Ingo A1 - Blatt, Michael R. T1 - What makes a gate? : the ins and outs of Kv-like K+ channels in plants N2 - Gating of K+ and other ion channels is 'hard-wired' within the channel protein. So it remains a puzzle how closely related channels in plants can show an unusually diverse range of biophysical properties. Gating of these channels lies at the heart of K+ mineral nutrition, signalling, abiotic and biotic stress responses in plants. Thus, our knowledge of the molecular mechanics underpinning K+ channel gating will be important for rational engineering of related traits in agricultural crops. Several key studies have added significantly to our understanding of channel gating in plants and have challenged current thinking about analogous processes found in animal K+ channels. Such studies highlight how much of K+ channel gating remains to be explored in plants. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/13601385 U6 - https://doi.org/10.1016/j.tplants.2009.04.001 SN - 1360-1385 ER - TY - JOUR A1 - Garcia-Mata, Carlos A1 - Wang, Jianwen A1 - Gajdanowicz, Pawel A1 - Gonzalez, Wendy A1 - Hills, Adrian A1 - Donald, Naomi A1 - Riedelsberger, Janin A1 - Amtmann, Anna A1 - Dreyer, Ingo A1 - Blatt, Michael R. T1 - A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2 N2 - Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys(168) located within the S3 alpha-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant. Y1 - 2010 UR - http://www.jbc.org/ U6 - https://doi.org/10.1074/jbc.M110.141176 SN - 0021-9258 ER - TY - JOUR A1 - Sharma, Tripti A1 - Dreyer, Ingo A1 - Riedelsberger, Janin T1 - The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana JF - Frontiers in plant science N2 - Potassium (K+) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K+ from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K+ are performed by K+ channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K+ channels and their behavior under stress conditions in the model plant Arabidopsis thaliana. KW - plant potassium channel KW - Shaker KW - TPK KW - K-ir-like KW - Arabidopsis thaliana KW - voltage-dependent KW - voltage-independent Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00224 SN - 1664-462X VL - 4 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Gonzalez, Wendy A1 - Riedelsberger, Janin A1 - Morales-Navarro, Samuel E. A1 - Caballero, Julio A1 - Alzate-Morales, Jans H. A1 - Gonzalez-Nilo, Fernando D. A1 - Dreyer, Ingo T1 - The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids JF - The biochemical journal N2 - The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K-in) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K-in channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K-in channel KAT1, mutations in the unique histidine exposed to the solvent (His(267)) do not affect the pH dependency. We demonstrate in the present study that His(267) of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe(266) shifts its pK(a) to undetectable values through a cation-pi interaction. Instead, we show that Glu(240) placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu(240), several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel. KW - Arabidopsis thaliana KW - channel protein structure KW - channel protein-proton interaction KW - KAT1 KW - pH regulation KW - potassium chanel Y1 - 2012 U6 - https://doi.org/10.1042/BJ20111498 SN - 0264-6021 VL - 442 IS - 7 SP - 57 EP - 63 PB - Portland Press CY - London ER - TY - JOUR A1 - Held, Katrin A1 - Pascaud, Francois A1 - Eckert, Christian A1 - Gajdanowicz, Pawel A1 - Hashimoto, Kenji A1 - Corratge-Faillie, Claire A1 - Offenborn, Jan Niklas A1 - Lacombe, Benoit A1 - Dreyer, Ingo A1 - Thibaud, Jean-Baptiste A1 - Kudla, Jörg T1 - Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex JF - Cell research N2 - Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM. KW - calcium sensor KW - protein kinase KW - potassium channel KW - signal transduction Y1 - 2011 U6 - https://doi.org/10.1038/cr.2011.50 SN - 1001-0602 VL - 21 IS - 7 SP - 1116 EP - 1130 PB - Nature Publ. Group CY - Shanghai ER -