TY - GEN A1 - Neigenfind, Jost A1 - Gyetvai, Gabor A1 - Basekow, Rico A1 - Diehl, Svenja A1 - Achenbach, Ute A1 - Gebhardt, Christiane A1 - Selbig, Joachim A1 - Kersten, Birgit T1 - Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Background: Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous. Results: Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given haplotype inference. The program is evaluated with simulated and experimental SNP data generated for heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype inference reported by the program, we can significantly improve the quality of the final result by applying additional methods that include scoring of the alternative haplotype inferences and genotype optimisation. For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons. Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes. Conclusion: Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is freeware and is distributed as a Java JAR file. The software can be downloaded from the webpage of the GABI Primary Database at http://www.gabipd.org/projects/satlotyper/. The application of SATlotyper will provide haplotype information, which can be used in haplotype association mapping studies of polyploid plants. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 883 KW - linkage disequilibrium KW - pure parsimony KW - potato KW - resistance KW - efficient KW - solanum KW - Conjunctive Normal Form KW - Full Adder KW - Disjunctive Normal Form KW - Haplotype Inference KW - Genotype Inference Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435011 SN - 1866-8372 IS - 883 ER - TY - GEN A1 - Riano-Pachon, Diego Mauricio A1 - Nagel, Axel A1 - Neigenfind, Jost A1 - Wagner, Robert A1 - Basekow, Rico A1 - Weber, Elke A1 - Müller-Röber, Bernd A1 - Diehl, Svenja A1 - Kersten, Birgit T1 - GabiPD : the GABI primary database - a plant integrative "omics" database N2 - The GABI Primary Database, GabiPD (http:// www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different ‘omics’ fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for textbased retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 137 KW - Phosphorylation sites KW - Arabidopsis thaliana KW - Information KW - Proteins KW - Families Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45075 ER -