TY - JOUR A1 - Lapresta-Fernández, Alejandro A1 - Cywinski, Piotr J. A1 - Moro, Artur J. A1 - Mohr, Gerhard J. T1 - Fluorescent polyacrylamide nanoparticles for naproxen recognition N2 - We present the synthesis of fluorescent acrylamide nanoparticles (FANs) capable of recognizing non-steroidal anti-inflammatory drugs (NSAIDs) in buffered aqueous solutions. Within this important group, we selected naproxen, one of the 2-arylpropionic acids (profens), due to its use for the treatment of moderate pain, fever, and inflammation. The nanosensors were prepared under mild conditions of inverse microemulsion polymerization using aqueous acrylamide as the monomer and N,N'-methylenebisacrylamide as the crosslinker, employing the surfactants polyoxyethylene-4-lauryl ether (Brij (R) 30) and sodium bis(2-ethylhexyl) sulfosuccinate in hexane. Furthermore, a fluorescent monomer, (E)-4-[4- (dimethylamino)styryl]-1-[4-(methacryloyloxymethyl)benzyl]pyridinium chloride (mDMASP) has been synthesized and incorporated into the nanoparticles. The nanosensors exhibit a broad absorbance at around 460 nm and a structureless fluorescence band with maximum at 590 nm in 0.5 M phosphate buffer (pH=7.2). The recognition process is performed on the basis of ionic interactions which are monitored by the fluorescence increase at 590 nm upon addition of different concentrations of naproxen. The FANs show a size distribution in the range of 20-80 nm, with a hydrodynamic diameter of 34 nm. In order to assess the selectivity of the FANs, a systematic study was conducted on the effect produced by drugs and biomolecules that could interfere with the analysis of naproxen. Y1 - 2009 UR - http://www.springerlink.com/content/100417 U6 - https://doi.org/10.1007/s00216-009-3007-2 SN - 1618-2642 ER -