TY - THES A1 - Conradt, Tobias T1 - Challenges of regional hydrological modelling in the Elbe River basin : investigations about model fidelity on sub-catchment level T1 - Herausforderungen für die regionale hydrologische Modellierung im Flußeinzugsgebiet der Elbe : Forschungen zur Modellgüte auf der Ebene der Teileinzugsgebiete N2 - Within a research project about future sustainable water management options in the Elbe River basin, quasi-natural discharge scenarios had to be provided. The semi-distributed eco-hydrological model SWIM was utilised for this task. According to scenario simulations driven by the stochastical climate model STAR, the region would get distinctly drier. However, this thesis focuses on the challenge of meeting the requirement of high model fidelity even for smaller sub-basins. Usually, the quality of the simulations is lower at inner points than at the outlet. Four research paper chapters and the discussion chapter deal with the reasons for local model deviations and the problem of optimal spatial calibration. Besides other assessments, the Markov Chain Monte Carlo method is applied to show whether evapotranspiration or precipitation should be corrected to minimise runoff deviations, principal component analysis is used in an unusual way to evaluate local precipitation alterations by land cover changes, and remotely sensed surface temperatures allow for an independent view on the evapotranspiration landscape. The overall insight is that spatially explicit hydrological modelling of such a large river basin requires a lot of local knowledge. It probably needs more time to obtain such knowledge as is usually provided for hydrological modelling studies. N2 - Innerhalb eines Forschungsprojekts zu zukünftigen nachhaltigen Optionen der Wasserwirtschaft im Elbe-Einzugsgebiet mußten quasi-natürliche Abflußszenarien bereitgestellt werden. Zu diesem Zweck wurde das räumlich diskretisierte ökohydrologische Modell SWIM eingesetzt. Nach den von dem stochastischen Klimamodell STAR angetriebenen Szenariosimulationen würde die Region deutlich trockener werden. Allerdings ist das Hauptthema dieser Dissertation die Herausforderung, die Ansprüche an hohe Modelltreue auch für kleinere Teileinzugsgebiete zu erfüllen. Normalerweise ist die Qualität der Simulationen für innere Punkte geringer als am Gebietsauslaß. Vier Fachartikel-Kapitel und das Diskussionskapitel beschäftigen sich mit den Gründen für lokale Modellabweichungen und dem Problem optimaler räumlicher Kalibrierung. Unter anderem wird die Markovketten-Monte-Carlo-Methode angewendet, um zu zeigen, ob Verdunstung oder Niederschlag korrigiert werden sollte, um Abweichungen des Abflusses zu minimieren, die Hauptkomponentenanalyse wird auf eine unübliche Weise benutzt, um lokale Niederschlagsänderungen aufgrund von Landnutzungsänderungen zu untersuchen, und fernerkundete Oberflächentemperaturen erlauben eine unabhängige Sicht auf die Verdunstungslandschaft. Die grundlegende Erkenntnis ist, daß die räumlich explizite hydrologische Modellierung eines so großen Flußeinzugsgebiets eine Menge Vor-Ort-Wissen erfordert. Wahrscheinlich wird mehr Zeit benötigt, solches Wissen zu erwerben, als üblicherweise für hydrologische Modellstudien zur Verfügung steht. KW - ökohydrologische Modellierung KW - räumliche Kalibrierung KW - Fehlerquellen der Modellierung KW - Landschaftseffekte KW - Fernerkundung KW - eco-hydrological modelling KW - spatial calibration KW - modelling error sources KW - landscape effects KW - remote sensing Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65245 ER - TY - JOUR A1 - Conradt, Tobias A1 - Wechsung, F. A1 - Bronstert, Axel T1 - Three perceptions of the evapotranspiration landscape comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances JF - Hydrology and earth system sciences : HESS N2 - A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling. Y1 - 2013 U6 - https://doi.org/10.5194/hess-17-2947-2013 SN - 1027-5606 VL - 17 IS - 7 SP - 2947 EP - 2966 PB - Copernicus CY - Göttingen ER -