TY - THES A1 - Cherubini, Yvonne T1 - Influence of faults on the 3D coupled fluid and heat transport N2 - Da geologische Störungen können als Grundwasserleiter, -Barrieren oder als gemischte leitende /stauende Fluidsysteme wirken. Aufgrund dessen können Störungen maßgeblich den Grundwasserfluss im Untergrund beeinflussen, welcher deutliche Veränderungen des tiefen thermischen Feldes bewirken kann. Grundwasserdynamik und Temperaturveränderungen sind wiederum entscheidende Faktoren für die Exploration geothermischer Energie. Diese Studie untersuchte den Einfluss von Störungen auf das Fluidsystem und das thermische Feld im Untergrund. Sie erforschte die physikalischen Prozesse, welche das Fluidverhalten und die Temperaturverteilung in Störungen und in den umgebenden Gesteinen. Dazu wurden 3D Finite Elemente Simulationen des gekoppelten Fluid und Wärmetransports für synthetische sowie reale Modelszenarien auf unterschiedlichen Skalen durchgeführt. Um den Einfluss einer schräg einfallenden Störung systematisch durch die schrittweise Veränderung der hydraulischen Öffnungsweite und der Permeabilität, zu untersuchen, wurde ein klein-skaliges synthetisches Modell entwickelt. Ein inverser linearer Zusammenhang wurde festgestellt, welcher zeigt, dass sich die Fluidgeschwindigkeit in der Störung jeweils um ~1e-01 m/s verringert, wenn die Öffnungsweite der Störung um jeweils eine Magnitude vergrößert wird. Ein hoher Permeabilitätskontrast zwischen Störung und umgebender Matrix begünstigt die Fluidadvektion hin zur Störung und führt zu ausgeprägten Druck- und Temperaturveränderungen innerhalb und um die Störung herum. Bei geringem Permeabilitätskontrast zwischen Störung und umgebendem Gestein findet hingegen kein Fluidfluss in der Störung statt, wobei das hydrostatische Druck- sowie das Temperaturfeld unverändert bleiben. Auf Grundlage der synthetischen Modellierungsergebnisse wurde der Einfluss von Störungen auf einer größeren Skala anhand eines komplexeren (realen) geologischen Systems analysiert. Dabei handelt es sich um ein 3D Modell des Geothermiestandortes Groß Schönebeck, der ca. 40 km nördlich von Berlin liegt. Die Integration von einer permeablen und drei impermeablen Hauptstörungen, zeigte unterschiedlich starke Einflüsse auf Fluidzirkulation, Temperatur – und Druckfeld. Die modellierte konvektive Zirkulation in der permeablen Störung verändert das thermische Feld stark (bis zu 15 K). In den gering durchlässigen Störungen wird die Wärme ausschließlich durch Diffusion geleitet. Der konduktive Wärmetransport beeinflusst das thermische Feld nicht, bewirkt jedoch lokale Veränderungen des hydrostatischen Druckfeldes. Um den Einfluss großer Störungszonen mit kilometerweitem vertikalen Versatz auf das geothermische Feld der Beckenskala zu untersuchen, wurden gekoppelte Fluid- und Wärmetransportsimulationen für ein 3D Strukturmodell des Gebietes Brandenburg durchgeführt (Noack et al. 2010; 2013). Bezüglich der Störungspermeabilität wurden verschiedene geologische Szenarien modelliert, von denen zwei Endgliedermodelle ausgewertet wurden. Die Ergebnisse zeigten, dass die undurchlässigen Störungen den Fluidfluss nur lokal beeinflussen. Da sie als hydraulische Barrieren wirken, wird der Fluidfluss mir sehr geringen Geschwindigkeiten entlang der Störungen innerhalb eines Bereichs von ~ 1 km auf jeder Seite umgelenkt. Die modellierten lokalen Veränderungen des Grundwasserzirkulationssystems haben keinen beobachtbaren Effekt auf das Temperaturfeld. Hingegen erzeugen permeable Störungszonen eine ausgeprägte thermische Signatur innerhalb eines Einflussbereichs von ~ 2.4-8.8 km in -1000 m Tiefe und ~6-12 km in -3000 m Tiefe. Diese thermische Signatur, in der sich kältere und wärmere Temperaturbereiche abwechseln, wird durch auf- und abwärts gerichteten Fluidfluss innerhalb der Störung verursacht, der grundsätzlich durch existierende Gradienten in der hydraulischen Druckhöhe angetrieben wird. Alle Studien haben gezeigt, dass Störungen einen beachtlichen Einfluss auf den Fluid-, und Wärmefluss haben. Es stellte sich heraus, dass die Permeabilität in der Störung und in den umgebenden geologischen Schichten so wie der spezifische geologische Rahmen entscheidende Faktoren in der Ausbildung verschiedener Wärmetransportmechanismen sind, die sich in Störungen entwickeln können. Die von permeablen Störungen verursachten Temperaturveränderungen können lokal, jedoch groß sein, genauso wie die durch hydraulisch leitende und nichtleitende Störungen hervorgerufenen Veränderungen des Fluidystems. Letztlich haben die Simulationen für die unterschiedlich skalierten Modelle gezeigt, dass die Ergebnisse sich nicht aufeinander übertragen lassen und dass es notwendig ist, jeden geologischen Rahmen hinsichtlich Konfiguration und Größenskala gesondert zu betrachten. Abschließend hat diese Studie demonstriert, dass die Betrachtung von Störungen in 3D Finiten Elementen Modellen für die Simulation von gekoppeltem Fluid- und Wärmetransport auf unterschiedlichen Skalen möglich ist. Da diese Art von numerischen Simulationen sowohl die geologische Struktur des Untergrunds sowie die im Erdinnern ablaufenden physikalischen Prozesse integriert, können sie einen wertvollen Beitrag leisten, indem sie Feld- und Laborgestützte Untersuchungen vervollständigen. N2 - Faults can act as conduits, barriers or mixed conduit/barrier systems to fluid flow. Therefore, faults may significantly influence fluid flow regimes operating in the subsurface, possibly resulting in distinct variations of the deep thermal field. Both, flow dynamics and temperature changes are in turn crucial factors that need to be taken into account for geothermal energy exploration. This study investigated the influence of faults on the subsurface fluid system and thermal field and explored the processes controlling fluid behavior and thermal distribution both within host rocks and faults. For this purpose, 3D finite element simulations of coupled fluid and heat transport have been carried out, both for synthetic and real-case model scenarios on different scales. A small-scale synthetic model was developed to systematically assess the impact of an inclined fault by changing gradually its hydraulic width and its permeability within the simulations. An observed linear inverse relationship revealed that changing the fault width by one order of magnitude results in a fluid velocity decrease (~1e-01 m/s) within the fault. A high permeability contrast between fault and matrix favors fluid advection into the fault and leads to pronounced pressure and temperature changes in and around the same domain. When the permeability contrast between fault domain and host rock is low, however, no fluid flow is observed in the fault, thus resulting in undisturbed hydrostatic pressure and temperature fields. On the basis of these synthetic fault modelling results, the influence of faults on a larger scale have been analyzed within a more complex (real-case) geological setting,- a 3D model of the geothermal site Groß Schönebeck , located ~40 km north of Berlin. The integration of one permeable and three impermeable major faults, resulted in distinct changes observed in the local fluid circulation, thermal and pressure field. Modelled convective circulation within the permeable fault decisively modifies the thermal field (up to 15 K). Within the low permeable faults, heat is transferred only by conduction, inducing no thermal imprint but local deviations of the hydrostatic pressure field. To investigate the impact of major fault zones on the basin-scale geothermal field, coupled fluid and heat transport simulations have been conducted for a 3D structural model for Brandenburg region (Noack et al. 2010; 2013). Different geological scenarios in terms of modelled fault permeability have been carried out of which two end member models are analyzed. The results showed that tight fault zones affect the flow field locally. Acting as hydraulic barriers, fluid flow is deviated with very low velocities along them within a range of ~ 1 km on either sides. The modelled local changes in the groundwater circulation system have no considerable effect on the temperature field. By contrast, permeable fault zones induce a pronounced signature on the thermal field extending over a distance of ~ 2.4-8.8 km at -1000 m depth and ~6-12 km at -3000 m depth. This thermal signature, characterized by alternating cooler and hotter temperature domains, is controlled by up- and downward directed flow within the fault domain, principally driven by existing hydraulic head gradients. All studies demonstrated that faults have a considerable impact on the fluid and heat flow. The permeability in faults and surrounding geological layers as well as the specific geological setting turned out to be crucial factors in controlling the different kinds of heat transfer mechanisms that may evolve in faults. Temperature variations caused by permeable faults may be local but significant as well as changes in fluid dynamics by both conduits and barriers. Thus, the results demonstrated the importance to consider faults in geothermal energy exploration. In the final analysis, the simulations for the small-, regional- and basin-scale models showed that the outcomes cannot be transferred by upscaling and that it is necessary to consider each geological setting separately with respect to its configuration and scale dimension. In summary, this study demonstrated that the consideration of faults in 3D finite element models for coupled fluid and heat transport simulations on different scales is feasible. As these type of numerical simulations integrate both, the structural setting of the subsurface and the physical processes controlling subsurface transport, the outcomes of this thesis may provide positive contributions in that they valuably complement field- and laboratory-based investigations. T2 - Der Einfluss von Störungen auf den 3D gekoppelten Fluid- und Wärmetransport KW - geologische Störungen KW - 3D numerische Modelle KW - gekoppelter Fluid-und Wärmetransport KW - Geothermie KW - Brandenburg KW - faults KW - 3D numerical models KW - coupled fluid and heat transport KW - geothermics KW - Brandenburg Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69755 ER - TY - JOUR A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Maystrenko, Yuriy Petrovich A1 - Cherubini, Yvonne A1 - Noack, Vera A1 - Kaiser, Bjoern Onno A1 - Sippel, Judith A1 - Bjoern, Lewerenz T1 - Models of heat transport in the Central European Basin System: Effective mechanisms at different scales JF - Marine and petroleum geology N2 - Understanding heat transport in sedimentary basins requires an assessment of the regional 3D heat distribution and of the main physical mechanisms responsible for the transport of heat. We review results from different 3D numerical simulations of heat transport based on 3D basin models of the Central European Basin System (CEBS). Therefore we compare differently detailed 3D structural models of the area, previously published individually, to assess the influence of (1) different configurations of the deeper lithosphere, (2) the mechanism of heat transport considered and (3) large faults dissecting the sedimentary succession on the resulting thermal field and groundwater flow. Based on this comparison we propose a modelling strategy linking the regional and lithosphere-scale to the sub-basin and basin-fill scale and appropriately considering the effective heat transport processes. We find that conduction as the dominant mechanism of heat transport in sedimentary basins is controlled by the distribution of thermal conductivities, compositional and thickness variations of both the conductive and radiogenic crystalline crust as well as the insulating sediments and by variations in the depth to the thermal lithosphere-asthenosphere boundary. Variations of these factors cause thermal anomalies of specific wavelength and must be accounted for in regional thermal studies. In addition advective heat transport also exerts control on the thermal field on the regional scale. In contrast, convective heat transport and heat transport along faults is only locally important and needs to be considered for exploration on the reservoir scale. The general applicability of the proposed workflow makes it of interest for a broad range of application in geosciences including oil and gas exploration, geothermal utilization or carbon capture and sequestration issues. (C) 2014 Elsevier Ltd. All rights reserved. KW - 3D thermal model KW - Geothermal field KW - Sedimentary basin KW - Heat transport by conduction KW - Advection and convection KW - Central European Basin System Y1 - 2014 U6 - https://doi.org/10.1016/j.marpetgeo.2014.03.009 SN - 0264-8172 SN - 1873-4073 VL - 55 SP - 315 EP - 331 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Scheck-Wenderoth, Magdalena T1 - Impact of single inclined faults on the fluid flow and heat transport - results from 3-D finite element simulations JF - Environmental earth sciences N2 - The impact of inclined faults on the hydrothermal field is assessed by adding simplified structural settings to synthetic models. This study is innovative in carrying out numerical simulations because it integrates the real 3-D nature of flow influenced by a fault in a porous medium, thereby providing a useful tool for complex geothermal modelling. The 3-D simulations for the coupled fluid flow and heat transport processes are based on the finite element method. In the model, one geological layer is dissected by a dipping fault. Sensitivity analyses are conducted to quantify the effects of the fault's transmissivity on the fluid flow and thermal field. Different fault models are compared with a model where no fault is present to evaluate the effect of varying fault transmissivity. The results show that faults have a significant impact on the hydrothermal field. Varying either the fault zone width or the fault permeability will result in relevant differences in the pressure, velocity and temperature field. A linear relationship between fault zone width and fluid velocity is found, indicating that velocities increase with decreasing widths. The faults act as preferential pathways for advective heat transport in case of highly transmissive faults, whereas almost no fluid may be transported through poorly transmissive faults. KW - Hydrothermal field KW - 3-D numerical simulations KW - Inclined faults KW - Fault zone KW - Coupled fluid flow and heat transport KW - Finite elements Y1 - 2013 U6 - https://doi.org/10.1007/s12665-012-2212-z SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3603 EP - 3618 PB - Springer CY - New York ER - TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena A1 - Moeck, Inga A1 - Lewerenz, Björn T1 - Controls on the deep thermal field - implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck JF - Environmental earth sciences N2 - The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Gro Schonebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field. KW - Thermal field KW - Coupled fluid and heat transport KW - Faults KW - Groß beta Schönebeck Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2519-4 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3619 EP - 3642 PB - Springer CY - New York ER -